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The big picture: 
numerical methods to solve 

Source terms S(Q) may be stiff 

Advective terms may not admit a conservative form 
(nonconservative products) 

Meshes are assumed 
unstructured 

Very high order of accuracy in both space and time 

May use upwind or centred approaches for numerical fluxes 
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Recall the integral form of the conservation laws 

in a control volume is 
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Conservative schemes in 1D 

Task: define numerical flux 

Basic property required: MONOTONICITY 
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There are two approaches: 

I: Upwind approach. Solve the Riemann problem 

II: Centred approach.  The numerical flux is  
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Properties required from 2-point flux 

Consistency: 

Definition: a monotone scheme satisfies 

Monotonicity: 
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Properties required from 2-point flux 

Theorem: for a two-point flux, necessary conditions for 
monotonicity are 

Remark: for a linear scheme 

monotonicity requires positivity of coefficients:  



Classical centred numerical fluxes 

The Lax-Friedrichs flux 

Properties 

1.  Linearly stable for 
2.  Monotone for all CFL numbers in the stability range 
3.  Largest local truncation error of all monotone schemes 

the Courant number 
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Classical centred numerical fluxes, contin... 

The Lax-Wendroff flux (2 versions) 

Properties 

1.  Linearly stable for  
2.  Non-monotone (oscillatory) 
3.  Second-order accurate in space and time 
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Classical centred numerical fluxes, contin... 

The Godunov centred flux (1961) 

Properties 

1.  Linearly stable for  

2. Monotone for  

3. Non-monotone for  
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The FORCE flux  
(First ORder CEntred) 

Toro E F.  
On Glimm-related schemes for conservation laws. 

Technical Report MMU-9602, Department of Mathematics and 
Physics, Manchester Metropolitan University, 1996,UK 
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Glimm’s method on a staggered mesh  
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Recall the integral form of the conservation laws 

in a control volume 
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Step I 

Step II 
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Question: can we write 

as a one-step conservative method  

with a given numerical flux  
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Answer: YES 

The numerical flux is 

But recall 
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The numerical flux is in fact 

with 
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Properties of the FORCE 
scheme 
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Properties of the FORCE scheme, 
cont. 

Proof of convergence of FORCE scheme in: 

Chen C Q and Toro E F. 
 Centred schemes for non-linear hyperbolic equations. 

J Hyperbolic . Differential. Equations. 1 (1), pp 531-566, 2004. 
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 The FORCE flux for the scalar case: 
more general averaging. 

Special cases: 
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Monotonocity 
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FORCE’s friends and relatives 

•  The composite schemes of Liska and Wendroff (friend) 

Liska R and Wendroff B. Composite schemes for conservation  
laws. SIAM J. Numerical Analysis, Vol. 35, pp 2250-2271, 1998 

•  The centred scheme of Nessyahu and Tadmor (relative) 

Non-oscillatory central differencing for hyperbolic conservation  
Laws. J. Computational Physics, Vol 87, pp 408-463, 1990. 
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Numerical results 
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How about extensions  
of FORCE ? 

•  High-order non-oscillatory extensions 

•  Source terms 

•  Multiple space dimensions 

•  Unstructured meshes 
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Toro E F, Hidalgo A and Dumbser M. 

FORCE schemes on unstructured meshes I:  
Conservative hyperbolic systems. 

 (Journal of Computational Physics, Vol. 228, pp 3368-3389, 
2009) 

FORCE schemes on 
unstructured meshes 
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Illustration in 2D 

Triangular primary mesh Primary and secondary mesh 
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Averaging operator applied on edge-base control volume gives 

Initial condition:  integral averages at time n 

Portion of j edge-base volume inside cell i 

Portion of j edge-base volume outside cell i 

Area of face j (between cells i and j) 

Unit outward normal vector to of face j 

Step I 
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Averaging operator applied on primary mesh gives 

Initial condition:  integral averages at time n+1/2 

Step II 
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Step III: one-step conservative scheme 
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Lax-Wendroff type flux 

The FORCE flux in α space dimensions 
on Cartesian meshes 

Lax-Friedrichs type flux 
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Stability and monotonicity results 

FORCE-type fluxes 
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One-dimensional interpretation 

α: parameter 
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Numerical results for the 1D Euler equations 
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Numerical results for the 1D Euler equations 



40 

Numerical results: 

Euler equations in 2D and 3D 
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2D Euler equations: reflection from triangle 
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3D Euler equations: reflection from cone 
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Numerical results: 

The Baer-Nunziato equations in 
2D and 3D 
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Application of ADER to the  
3D Baer-Nunziato  equations 

11 non-linear hyperbolic PDES 
stiff source terms: relaxation terms 
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EXTENSION TO NONCONSERVATIVE SYSTEMS: 
Path-conservative schemes 

DUMBSER M, HIDALGO A, CASTRO M, PARES C, TORO E F. 

FORCE schemes on unstructured meshes II:  
Nonconservative hyperbolic systems. 

 Computer Methods in Applied Science and Engineering. Online version available, 
2010 

Also published (NI09005-NPA) in pre-print series of the  
Newton Institute for Mathematical Sciences 

University of Cambridge, UK. 

It can be downloaded from 
http://www.newton.ac.uk/preprints2009.html 

CASTRO M, PARDO A, PARES C, TORO E F. (2009). 
 ON SOME FAST WELL-BALANCED FIRST ORDER SOLVERS FOR 

NONCONSERVATIVE SYSTEMS.  
MATHEMATICS OF COMPUTATION. ISSN: 0025-5718. Accepted.  
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Double Mach reflection for  the 2D Baer-Nunziato equations 
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Double Mach reflection for  the 2D Baer-Nunziato equations 
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Summary on FORCE  

  A centred scheme 
  One-step scheme 

  In conservative form, with a numerical flux 
  Monotone 

  Linearly stable up to CFL =1, 1/2, 1/3 
  Very simple to use, applicable to any system (useful for 

complicated systems) 
  High-order extensions (TVD, WENO, DG, ADER) 

   Further reading: Chapters 18  of:  

Toro E F. Riemann solvers and numerical methods for fluid dynamics. 
Springer, Third Edition, 2009. 


