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This lecture is about   
the ADER approach:  

(Toro et al.  2001)   

A shock-capturing approach for constructing 
conservative, non-linear numerical methods of 

arbitrary accuracy in space and time, on 
structure and unstructured meshes, in the  

frameworks of  
 Finite Volume and 

Discontinuous Galerkin Finite Element  
Methods 
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Key feature of ADER: 

High-order Riemann problem 
(also called the Generalized Riemann problem or 

the Derivative Riemann problem) 

This generalized Riemann problem has initial conditions 
with a high-order (spatial) representation, such as polynomials 
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High accuracy. 
But why ? 
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Collaborators: Munz, Schwartzkoppf  (Germany),  Dumbser (Trento) 

Test for acoustics ADER 
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Exact relation between integral averages 

Exact relation 

Integration in space and time 
on control volume 

Integral averages 
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Godunov’s finite volume scheme in 1D 
(first order accurate) 

Conservative formula 

Godunov’s numerical flux 

: Solution of classical Riemann problem 
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Illustration of ADER finite volume method 

Update formula 

Integral average at time n 

Control volume in  
computational domain 

Numerical flux 

Numerical source 
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ADER on 2D unstructured meshes 

The numerical flux requires the calculation of an integral in space along 
The volume/element interface and in time. 
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Local Riemann problems  
from high-order representation of data 
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Key ingredient: 

the high-order  
(or generalized) 

Riemann problem 
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The high-order (or derivative, or generalized)  
Riemann problem: 

Initial conditions: two smooth functions  

For example, two polynomials of degree K 

The generalization is twofold:  

(1) the intial conditions are two polynomials of arbitrary degree 
(2) The equations include source terms 
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Four solvers for the  
generalized Riemann problem: 

C E Castro and E F Toro. Solvers for the high-order Riemann problem for hyperbolic 
balance laws. Journal  Computational Physics Vol. 227, pp 2482-2513,, 2008 

M Dumbser, C Enaux and E F Toro. Finite volume schemes  of very high order of 
accuracy for stiff hyperbolic balance laws . Journal of Computational Physics, Vol 
227, pp 3971-4001, 2008. 

E F Toro and V A Titarev. Soloution of the generalized Riemann problem for 
advection-reaction equations. Proc. Royal Society of London, A, Vol. 458, pp 271-281, 
2002. 

E F Toro and V A Titarev. Derivative Riemann solvers for systems of conservation 
laws and ADER methods. Journal  Computational Physics Vol. 212, pp 150-165,2006 



The leading term 
 and  

higher-order terms 

Solver 1 
Toro E. F. and Titarev V. A.  Proc. Roy. Soc. London.  Vol. 458, pp 271-281,  2002 

Toro E. F. and Titarev V. A. J. Comp. Phys. Vol. 212, No. 1,  pp. 150-165, 2006.  

(Based on work of Ben-Artzi and Falcovitz, 1984, see also Raviart and LeFloch 1989) 
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Initial conditions 
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Solution: 

Leading term: 

Computing the leading term: 
Solve the classical RP 

Take Godunov state at x/t=0 
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Computing the higher-order terms: 

First use the Cauchy-Kowalewski  (*) procedure yields 

Example: 

Must define spatial derivatives at x=0 for t>0 

(*) Cauchy-Kowalewski theorem. One of the most fundamental results in the  
     theory of PDEs. Applies to problems in which all functions involved are analytic.  
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Then construct  evolution equations for the variables:  

For the general case it can be shown that: 

Neglecting source terms and linearizing we have 

Computing the higher-order terms 

Note: 
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Similarity solution 

All spatial derivatives at x=0 are now defined 

Evaluate solution at x/t=0 

Computation of higher-order terms 
For each k solve classical Riemann problem: 
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Computing the higher-order terms 
All time derivatives at x=0 are then defined 

Solution of DRP is 

GRP-K = 1( non-linear RP) + K (linear RPs) 

Options: state expansion and flux expansion 



23 

Illustration of ADER finite volume method 

Update formula 

Integral average at time n 

Control volume in  
computational domain 

Numerical flux 

Numerical source 
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C E Castro and E F Toro. Solvers for the high-order Riemann problem for hyperbolic balance laws. 
Journal  Computational Physics Vol. 227, pp 2482-2513,2008 

Two more solvers are studied in: 

One of them is a re-interpretation of the method of  
Harten-Enquist-Osher-Chakravarhy (HEOC) 

The other solver has elements of the  HEOC solver and solves linear problems 
for high-order time derivatives. 

It is shown that all three solvers are exact for the generalized  
Riemann problem for a linear homogeneous hyperbolic system 

The HEOC method is in fact a generalization of the MUSCL-Hancock method 
of Steve Hancock (van Leer 1984) 



The latest solver 
M Dumbser, C Enaux and E F Toro. Finite volume schemes  of very high order of 
accuracy for stiff hyperbolic balance laws.  Journal of Computational Physics, Vol 
227, pp 3971-4001, 2008. 

Extends  Harten’s method (1987)** 

• Evolves data left and right prior to “time-interaction” 
• Evolution of data is done numerically by an implicit space-
time DG method 
• The solution of the LOCAL generalized Riemann problem 
has an implicit predictor step 
• The scheme remains globally explicit 
• Stiff source terms can be treated adequately 
• Reconciles stiffness with high accuracy in both space and 
time 

**C E Castro and E F Toro. Solvers for the high-order Riemann problem for hyperbolic balance 
laws. Journal  Computational Physics Vol. 227, pp 2482-2513,2008 
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Main features of ADER schemes 

One-step fully discrete schemes 

Accuracy in space and time is arbitrary 

Unified framework 

Finite volume, DG finite element and Path-conservative 
formulations 

General meshes 
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Main applications so far 

1, 2, 3 D Euler equations on unstructured meshes 
3D Navier-Stokes equations 
Reaction-diffusion (parabolic equations) 
Sediment transport in water flows (single phase) 
Two-phase sediment transport (Pitman and Le model) 
Two-layer shallow water equations 
Aeroacoustics in 2 and 3D 
Seismic wave propagation in 3D 
Tsunami wave propagation 
Magnetohydrodynamics 
3D Maxwell equations 
3D compressible two-phase flow, etc. 
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Sample results for 
linear advection  



29 



30 



31 

WENO-5 

ADER-3 
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Sample results for 
2D and 3D Euler equations 



2D Euler equations: reflection from triangle 
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3D Euler equations: reflection from cone 
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Sample results for 
2D and 3D Baer-Nunziato equations 
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Application of ADER to the  
3D Baer-Nunziato  equations 

11 nonlinear hyperbolic PDES 
Stiff source terms: relaxation terms 



37 

EXTENSION TO NONCONSERVATIVE SYSTEMS: 
Path-conservative schemes 

DUMBSER M, HIDALGO A, CASTRO M, PARES C, TORO E F. (2009). 
 FORCE Schemes on Unstructured Meshes II: Nonconservative Hyperbolic Systems. 

Computer Methods in Applied Science and Engineering. Online version available, 
2010 

Also published (NI09005-NPA) in pre-print series of the  
Newton Institute for Mathematical Sciences 

University of Cambridge, UK. 

It can be downloaded from 
http://www.newton.ac.uk/preprints2009.html 

CASTRO M, PARDO A, PARES C, TORO E F  (2009). 
 ON SOME FAST WELL-BALANCED FIRST ORDER SOLVERS FOR 

NONCONSERVATIVE SYSTEMS.  
MATHEMATICS OF COMPUTATION. ISSN: 0025-5718. Accepted.  
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Three space dimensions 

Unstructured meshes 

Path-conservative method 

Centred non-conservative FORCE is bluilding block 

ADER: high-order of accuracy in space and time 

(implemented upto 6-th order in space and time) 
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Reference solutions to the BN equations 

Exact Riemann solver of Schwendemann et al. 
(2006) (1D) 

Exact smooth solution the 2D BN equations to be 
used in convergence rate studies (Dumbser et al. 
2010) 

Spherically symmetric 3D BN equations reduced to 
1D system with geometric source terms. This is used 
to test 2 and 3 dimensional solutions with shocks  
(Dumbser et al. 2010) 
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Convergence  rates study in 2D unstructured meshes 



41 

BN equations: spherical explosion test 
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Double Mach reflection for  the 2D Baer-Nunziato equations 
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Double Mach reflection for  the 2D Baer-Nunziato equations 
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Further reading:  

Chapters 19 and 20 of:  

Toro E F. Riemann solvers and numerical methods for fluid dynamics. 
Springer, Third Edition, 2009. 
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Thank you  


