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Introduction Monte Carlo methods

Introduction

We shall present here the motivation and a general description of a

method dealing with a class of problems in mathematical physics. The

method is, essentially, a statistical approach to the study of differential

equations, or more generally, of integro-differential equations that occur

in various branches of the natural sciences.

(N.Metropilis, S.Ulam, ”The Monte Carlo method”, J. Am. Stat. Ass., 1949.)
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Introduction Monte Carlo methods

Monte Carlo methods

Nowadays Monte Carlo methods find application in a wide field of areas,
including many subfields of physics, like statistical physics or high energy
physics, and ranging to areas like biology, chemistry, finance, computer
graphics and video games.

Classical mathematical applications of Monte Carlo involves the computation
of multidimensional integrals, the solution of partial differential equations,
Markov chains and optimization problems.

Monte Carlo methods are often used when other methods fail, since they are
much less sensitive to the course of dimensionality, which plagues
deterministic methods in problems with a large number of variables.

Despite the widespread use of the methods, and numerous descriptions of
them in articles and monographs1, it is virtually impossible to find a unique
notion of Monte Carlo method in the literature and the term Monte Carlo is
often used to denote any numerical technique based on some kind of
stochastic simulation.

1J.M.Hammersley, D.C.Handscomb, Monte Carlo Methods, 1964. N.Madras, Lectures on
Monte Carlo methods, 2002.
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Introduction A simple example

A simple example
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Suppose we want to estimate π with a Monte Carlo method. We can consider a
circle of diameter 2 inside the square [−1, 1] × [−1, 1]. The square has area 4 and
the circle π. Suppose we pick up a point P at random uniformly inside the square.
The probability that P lies inside the circle is π/4. If we select N points
P1, . . . , PN independently and uniformly in the square we can estimate π from

π

4
≈ Z

N

where Z is the number of points inside the circle. More precisely Z has a binomial
distribution with parameters N and π/4 and its expectation is E(Z) = Nπ/4.
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Introduction A simple example

Convergence
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For example, taking N = 105 points suppose we observed Z = 78582 then our
estimates of π would be 4 × 78582/105 = 3.143280. It can be shown that for the
law of large numbers

lim
N→∞

P (|π − E(4Z/N)| ≥ ε) = 0,

namely as N gets large there is a very small probability that our estimates
deviates much from π.
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Introduction A simple example

Basic issues

By extending this example it is evident that one could use Monte Carlo to
estimate areas and volumes and more in general subsets of R

d (and therefore also
integrals).
From the example we can also see the importance of the following basic issues
common to most Monte Carlo methods

Generation. How do we generate random numbers with a specific
distribution? We have to keep in mind that we need many random numbers
and that they must be computed fast.

Accuracy. How accurate can we expect our answers to be? In the example
we found that the accuracy of our estimate was proportional to 1/

√
N . Is

this a general principle of Monte Carlo methods?

Efficiency. How efficient is our method? Is there another method that will
gives us comparably accurate answers in less time?
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Random sampling Pseudo-Random numbers

Pseudo-Random numbers

Before entering the description of the methods, we give a brief review of random
sampling, which is at the basis of several Monte Carlo methods.
We assume that our computer is able to generate a uniformly distributed pseudo

random number between 0 and 1.

Real random numbers can not be generated because

◮ floating points are used as approximation or real numbers
◮ a really random sequence can not be generated even at a discrete level

(it would require an infinite memory)

Random number generators produce a sequence of numbers which satisfy
some properties of random sequences. In particular, one wishes to generate a
sequence ξn which is

◮ uniformly distributed (approximate Lebesgue measure in [0, 1])
◮ the elements of the sequence are uncorrelated (for example absence of pairwise

correlation means that (ξn, ξn+1) should approximate Lebesgue measure in
[0, 1]2)

◮ they have to be computed quickly.
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Random sampling Pseudo-Random numbers

Good and bad generators
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Example: Linear Congruential Generators (LCG):

xn+1 = (axn + c) mod m, n ≥ 0

with a, c,m ∈ N.
Dividing xn by m one obtains an approximation of the uniform distribution in
[0, 1].
xn is a sequence with period at most m, therefore m has to be large enough. The
quality of the result depends on the choice of a, c,m. A ”good” choice, used by
Matlab 4.0, is m = 231 − 1, a = 75, c = 0.
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Random sampling Pseudo-Random numbers

Monovariate distributions

Let x ∈ R be a random variable with density px(x), i.e. px(x) ≥ 0,
∫

Ω
px(x) dx = 1, and let ξ be a uniformly distributed random variable (number) in

[0, 1].

x 

p
x
(x) 

1 

1 0 
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Random sampling Pseudo-Random numbers

Inverse transform methods

Then the relation between x and ξ can be found using inverse transform methods.
We have

Px(x) =

∫ x

−∞

px(y) dy = ξ,

where Px(x) is the distribution function corresponding to the random variable x,
i.e. the primitive of px(x).
Then the random variable x can be sampled by sampling a uniformly distributed
variable ξ, and then solving

x = P−1
x (ξ).

Example: Let px(x) = exp(−x), x ≥ 0. Then

Px(x) =

∫ x

0

exp(− y) dy = 1 − exp(−x) = ξ,

and therefore
x = − ln(1 − ξ)

or x = − ln ξ, because 1 − ξ is also uniformly distributed in [0, 1].
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Random sampling Acceptance-rejection methods

Acceptance-rejection methods

To compute the inverse function, in general, a nonlinear equation has to be
solved. This can be computationally expensive. A different technique is the
so-called acceptance–rejection.
Let x be a random variable with density px(x), x ∈ R. We look for a function

w(x) ≥ px(x)∀x ∈ R

whose primitive W (x) is easily invertible. Let

A =

∫

∞

−∞

w(x) dx

and denote with ξ1 and ξ2 uniformly [0, 1] random numbers.

Algorithm [acceptance-rejection]:

1 Sample from w(x)/A by solving the equation W (x) = Aξ1;

2 if w(x)ξ2 < px(x) then accept the sample, else reject the sample and repeat step 1.
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Random sampling Acceptance-rejection methods

Acceptance-rejection
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The efficiency of the scheme depends on how easy it is to invert the function
W (x) and how frequently we accept the sample. The fraction of accepted
samples equals the ratio of the areas below the two curves px(x) and W (x) and it
is therefore equal to 1/A.
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Random sampling Acceptance-rejection methods

Convex combinations

Sometimes a density function is given as a convex combination of simpler density
functions,

p(x) =
M
∑

i=1

wipi(x)

where wi are probabilities i.e.

wi ≥ 0,
M
∑

i=1

wi = 1,

and pi(x) are probability densities.
In that case the sampling can be performed as follows

Algorithm:

1 select an integer i ∈ {1, . . . , M} with probability wi;

2 sample x from a random variable with density pi(x).
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Random sampling Acceptance-rejection methods

Multivariate distributions

Suppose we want to sample a n-dimensional random variable x = (x1, . . . , xn),
whose probability density is px(x).
If the density can be written as a product of densities of scalar random variables
(marginal probability densities), i.e. if

px(x1, . . . , xn) = p1(x1)p2(x2) · · · pn(xn),

then the n scalar random variables x1, . . . , xn are independent, and the problem
is equivalent to sampling n monovariate random variables.
If this is not the case, then one may first look for a transformation
T : x → η = T (x) such that in the new variables the probability density is
factorized, i.e.

px(x1, . . . xn)dx1dx2 . . . dxn = pη1
(η1)pη2

(η2) · · · pηn
(ηn)dη1dη2 . . . dηn,

then sample the variables η1, . . . ηn, and finally compute x by inverting the map
T , i.e. x = T−1(η).
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Random sampling Some relevant examples

Normal distributions

As an example we show how to sample from a Gaussian distribution. Let x be a
normally distributed random variable with zero mean and unit variance,

p(x) =
1√
2π

exp

(

−x2

2

)

.

In order to sample from p one could invert the distribution function
P (x) = (1 + erf(x/

√
2))/2, where

erf(x) =
2√
π

∫ x

0

exp(−t2) dt,

denotes the error function. However the inversion of the error function may be
expensive.
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Random sampling Some relevant examples

Box-Muller method

An alternative procedure is obtained by the so called Box-Muller method described
below.
Let us consider a two dimensional normally distributed random variable. Then

p(x, y) =
1

2π
exp

(

−x2 + y2

2

)

= p(x)p(y).

If we use polar coordinates

x = ρ cos θ, y = ρ sin θ,

then we have

1

2π
exp

(

−x2 + y2

2

)

dx dy =
1

2π
exp

(

−ρ2

2

)

ρ dρ dθ.
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Random sampling Some relevant examples

Box-Muller method
Therefore in polar coordinates the density function is factorized as pρ dρ pθ dθ,
with

pρ = exp

(

−ρ2

2

)

ρ, ρ ≥ 0

pθ =
1

2π
, 0 ≤ θ < 2π

The random variables ρ and θ are readily sampled by inverting pρ and pθ, i.e.

ρ =
√

−2 ln ξ1, θ = 2πξ2,

and, from these x and y are easily obtained.
At the end of the procedure we have two points sampled from a Normal(0,1)
distribution (i.e. a Gaussian distribution with zero mean and unit variance). Of
course, if the random variable has mean µ and standard deviation σ, then x and y
will be scaled accordingly as

x = µx + σxρ cos θ, y = µy + σyρ sin θ.
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Random sampling Some relevant examples

Surface of a sphere
Here we show how to sample a point uniformly from the surface of a sphere. A
point on a unit sphere is identified by the two polar angles (ϕ, θ) ,

x = sin θ cos ϕ,

y = sin θ sin ϕ,

z = cos θ.

Because the distribution is uniform, the probability of finding a point in a region
is proportional to the solid angle

dP =
dω

4π
=

sin θ dθ

2
· dϕ

2π
,

and therefore

dϕ

2π
= dξ1,

sin θ dθ

2
= dξ2.

Integrating the above expressions we have

ϕ = 2πξ1, θ = arccos(1 − 2ξ2).
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Monte Carlo techniques Monte Carlo integration

Monte Carlo integration
Consider the simple integral

I[f ] =

∫

[0,1]d
f(x)dx, d ≥ 1,

then if x is a random vector uniformly distributed in [0, 1]d we have
I[f ] = E[f(x)], where E[·] denotes the expectation.
If {xn} is a sequence of pseudo-random vectors uniform in [0, 1]d then

IN [f ] =
1

N

N
∑

n=1

f(xn), E[IN [f ]] = I[f ].

For the law of large numbers it converges in probability2

lim
N→∞

IN [f ] = I[f ],

and
I[f ] − IN [f ] ≈ σfN−1/2w, E[(I[f ] − IN [f ])2] = σfN−1/2,

where σ2
f is the variance of f and w is a normal random variable with zero mean

and unit variance. Note that there is no dependence on the dimension.
2W.Feller ’71, R.E.Caflisch ’98
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Monte Carlo techniques Monte Carlo integration

Moments
If g(x) is a non uniform probability density function in [0, 1]d and we consider the
integral

I[f ] =

∫

[0,1]d
f(x)g(x)dx, d ≥ 1,

then if {xn} is a sequence of pseudo-random vectors distributed as g(x) in [0, 1]
we have

Ik
N [f ] =

1

N

N
∑

n=1

f(xn), E[Ik
N [f ]] = Ik[f ],

and again convergence rate goes like O(N−1/2).
A typical situation of this type is when we evaluate moments of g(x)

Ik[f ] =

∫

[0,1]d
g(x)xkdx, d, k ≥ 1,

as

Ik
N [f ] =

1

N

N
∑

n=1

(xn)k.

Remark: The convergence rate for a deterministic grid based quadrature is
O(N−k/d) for an order k method. Thus Monte Carlo is ”better” if k/d ≤ 1/2.
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Monte Carlo techniques Variance reduction strategies

Variance reduction strategies

One of the main drawback of the acceptance-rejection techniques described
above is the large variance of the samples we obtain. This is mainly due to
the fact that we sample from the whole interval of interest of the distribution
function.

Stratified sampling The basic principle stratified sampling is to divide the
sampling interval up into subintervals (cells). You then perform an inverse
transform sampling or an acceptance-rejection approach on each subinterval.

Importance sampling You rewrite the integral as

I[f ] =

∫

[0,1]d

f(x)

g(x)
g(x) dx

and given {xn} pseudo-random numbers distributed as g(x) estimate

IN [f ] =
1

N

N
∑

n=1

f(xi)

g(xi)
.
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Monte Carlo techniques Variance reduction strategies

Reconstruction
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Given a set of N samples ξ1, ξ2, . . . , ξN the probability density is defined by

f(x) =
1

N

N
∑

k=1

δ(x − ξk).

The simplest method, which produces a piecewise constant reconstruction, is
based on evaluating the histogram of the samples at the cell centers of a grid

f(xj+1/2) =
1

N

N
∑

k=1

Ψ(ξk − xj+1/2), j = . . . ,−2,−1, 0, 1, 2, . . .

where Ψ(x) = 1/∆x if |x| ≤ ∆x/2 and Ψ(x) = 0 elsewhere.
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Applications to PDEs

Applications to PDEs

Several partial differential equations can be solved numerically by
probabilistic algorithms such as Monte-Carlo methods, stochastic particle
methods, ergodic algorithms, etc.

Usually these probabilistic methods are not competitive in terms of efficiency
with direct deterministic discretizations (finite differences/volumes) of the
same differential equations.

However they become efficient compared to deterministic approaches in
problems where a large number of dimensions or complex geometries are
involved.

Moreover, thanks to the natural interpretation of the statistical sample as a
physical particle, quite often Monte Carlo methods (or particle methods)
allow a better description of the physical properties of the system under study.
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Applications to PDEs Diffusion problems

Diffusion problems
Diffusion equations are a classical field where Monte Carlo simulations play a
relevant rule. Let’s illustrate the basic principles of the method with a simple
linear example







∂u

∂t
= D△u, x ∈ R

d, D, t > 0

u(x, 0) = u0(x).

Explicit exact solution is given by the integral formula

u(x, t) =

∫

Rd

Gt(x − y)u0(y) dy = Gt ∗ u0(x),

where Gt is the heat kernel

Gt(x − y) =
1

(4πDt)d/2
e

|x−y|2

4Dt .

Let us assume u0(x) a probability density and consider a set of N samples
ξ0
1 , . . . , ξ0

N ∈ R
d from u0(x). Note that in this case u(x, t) is also a probability

density.
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Applications to PDEs Diffusion problems

A first method is based on evaluating the integral solution as an expected
value of the heat kernel to get

u(x, t) ≈ 1

N

N
∑

i=1

Gt(x − ξ0
i ).

Note however that for each point x ∈ R
d we have a computational cost of

O(N), so for a grid of M points in space we have a cost of O(MN).

A different approach is based on sampling directly the solution from the
integral representation. This can be easily achieved observing that given two
independent random variables X and Y distributed respectively as Gt(x) and
u0(y) then Z = X + Y is distributed as u(z, t) = Gt ∗ u0(z).
Thus a set of samples ξ1, . . . , ξN ∈ R

d from u(x, t) is obtained as

ξi = ξ0
i +

√
2Dt ηi, i = 1, . . . , N

where ηi ∈ R
d are normally distributed with zero mean and unit variance.

Note that this is nothing else then the classical random walk method3. In this
case the cost of the reconstruction is O(N) independently of M .

3A.Chorin, ’70
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Applications to PDEs Diffusion problems

Heat equation
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Solution of the heat equation with D = 1 at t = 0.4 by estimating the expectation
of the heat kernel with M = 100, N = 120 (left) and by the random walk method
with M = 100, N = 12 × 103 and simple piecewise constant reconstruction
(right). The initial data is the sum of two square waves u0(x) = 0.5,
x ∈ [−2.5,−0.5], u0(x) = 1, x ∈ [0.5, 2.5] and u0(x) = 0 elsewhere.
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Applications to PDEs Diffusion problems

Heat equation
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Plot of the L2 error in time for the two Monte Carlo methods. Left: M = 100
and expectation of the heat kernel with N = 120 (red) and by the random walk
method with N = 12 × 103 (blue). Right: M = 200 and expectation of the heat
kernel with N = 6000 (red) and by the random walk method with N = 12 × 105

(blue).
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Applications to PDEs Elliptic equations

Elliptic equations

Monte-Carlo methods have been widely used for solving elliptic equations such as
Laplace equation and Poisson equation. This becomes very economical when you
want to solve the equation at a few points or when there is a severe gradient near
the boundary. Let us consider the Laplace equation

{

△u = 0, x ∈ Ω ⊂ R
2

u(x) = g(x), x ∈ ∂Ω.

Solutions of Laplace equation are called harmonic functions and for such functions
we have the mean value property

u(x) =
1

2πR

∫

∂D

u(x) dx,

for any disk D ⊂ Ω of radius R and center x.
This property can be used to set up a Monte Carlo simulation to compute the
value of the solution in a given point x ∈ R

2 by means of an iterative random
walk technique.
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Applications to PDEs Elliptic equations

The basic random walk method reads as follows.

1 First compute the shortest distance d of the point x to any of the boundaries
of your domain Ω.

2 Calculate the next position of your point using relations

x = x + dn, n = (cos(θ), sin(θ)),

where θ is a uniformly distributed random variable in [0, 2π].

3 Repeat step 1 and 2 until the point reaches the boundary (up to a small fixed
tolerance). Record the value of g at that point of the boundary.

If we repeat the above random walk N times starting from the same initial point
x and obtain the final values g(ξ1), . . . , g(ξN ) it can be shown that a Monte Carlo
estimate of the solution in x is given by

u(x) ≈ 1

N

N
∑

i=1

g(ξi)
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Applications to PDEs Elliptic equations

Laplace equation
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Random walk solution at the point (1, 1). An example of random path (left) and
convergence to the exact value u(1, 1) = 3.26584 . . . (right). The domain Ω is the
triangle of vertices (0, 0), (4, 0) and (0, 3). The exact solution is

u(x1, x2) =
1

2

3
∑

i=1

qi log((x1 − Xi)
2 + (x2 − Yi)

2),

with q = (−2, 1, 3), X = (−1, 5,−1) and Y = (−1,−1, 4).
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Applications to PDEs Convection-diffusion equations

Convection equations

Next we consider the linear advection equation







∂u

∂t
+ a · ∇xu = 0, a, x ∈ R

d, t > 0

u(x, 0) = u0(x).

The exact solution reads
u(x, t) = u0(x − at).

Again we assume u0(x) a probability density and consider a set of N samples
ξ0
1 , . . . , ξ0

N ∈ R
d from u0(x). Using this set of samples we can sample directly

from the exact solution. In fact, u(x, t) is simply given by a shift of |at| in the a
direction of the initial data. Thus a set of samples ξ1, . . . , ξN ∈ R

d from u(x, t) is
obtained as

ξi = ξ0 + at, i = 1, . . . , N.

Note that except from sampling the initial data no additional source source of
randomness is present and the method corresponds to a standard deterministic
particle transport.
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Applications to PDEs Convection-diffusion equations

Convection-diffusion
Linear convection-diffusion problems in the form







∂u

∂t
+ a · ∇xu = D△u, a, x ∈ R

d, D, t > 0

u(x, 0) = u0(x),

can be treated similarly by coupling the particle transport with the random walk
method. Thus starting with a set of N samples ξ0

1 , . . . , ξ0
N ∈ R

d from u0(x) a set
of samples ξ1, . . . , ξN ∈ R

d from the solution u(x, t) is obtained as

ξi = ξ0 + at +
√

2Dt ηi i = 1, . . . , N,

where ηi ∈ R
d are normally distributed with zero mean and unit variance.

In time dependent problems such as diffusion, convection and
convection-diffusion the corresponding Monte Carlo methods don’t have any
stability constraints for the choice of the time step.

In contrast with most deterministic schemes no extra dissipation due to the
numerical solution of the transport part is added.
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Applications to PDEs Convection-diffusion equations

Convection-diffusion
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Solution at t = 0.5 (left) and t = 2 (right) with a = 1 and D = 0.05 using
N = 12000 samples and M = 100 grid points in the reconstruction. The initial
data is the sum of two square waves u0(x) = 0.5, x ∈ [−4,−2], u0(x) = 1,
x ∈ [−1, 1] and u0(x) = 0 elsewhere.
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Applications to PDEs Conservation laws

Conservation laws

Consider now the following scalar conservation law







∂u

∂t
+

∂F (u)

∂x
= 0, x ∈ R, t > 0

u(x, 0) = u0(x).

Approximations with Monte Carlo are found in the literature for rather specific
situations like the Burgers’ equation4. We show a general way to construct Monte
Carlo methods based on the following relaxation approximation5











∂u

∂t
+

∂v

∂x
= 0,

∂v

∂t
+ a2 ∂u

∂x
= −1

ε
(v − F (u)).

In the limit ε → 0 we get the local equilibrium v = F (u) and, under the
subcharacteristic condition a2 > F ′(u)2, we recover the scalar conservation law.

4M.Bossy, D.Talay, ’97
5S.Jin, Z.Xin ’95
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Applications to PDEs Conservation laws

If we define with a > 0

f =
au + v

2a
, g =

au − v

2a
, Ef (u) =

au + F (u)

2a
, Eg(u) =

au − F (u)

2a
,

the system can be rewritten in diagonal form as











∂f

∂t
+ a

∂f

∂x
= −1

ε
(f − Ef (u))

∂g

∂t
− a

∂g

∂x
= −1

ε
(g − Eg(u)).

The solution is then approximated by means of an operator splitting based on
alternating the solution of the convection and homogeneous relaxation steps











∂f

∂t
+ a

∂f

∂x
= 0

∂g

∂t
− a

∂g

∂x
= 0.











∂f

∂t
= −1

ε
(f − Ef (u))

∂g

∂t
= −1

ε
(g − Eg(u)).

In the sequel we assume a ≥ |F (u)|/u so that Ef and Eg are nonnegative
quantities such that Ef + Eg = u.
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Applications to PDEs Conservation laws

Monte Carlo approximation

Let us assume f0 and g0 probability densities. Given a set of samples
(ξ0

1 , υ0
1), . . . , (ξ0

N , υ0
N ), where υi ∈ {−a, a} characterize the samples of f0(x) from

those of g0(x), we can sample directly from the exact solutions of the operator
splitting steps

f∗(x, t) = f0(x − at), f(x, t) = e−t/εf∗(x, t) + (1 − e−t/ε)Ef (u∗(x, t)),

g∗(x, t) = g0(x + at), g(x, t) = e−t/εg∗(x, t) + (1 − e−t/ε)Eg(u
∗(x, t)).

A new set of samples (ξ1, υ1), . . . , (ξN , υN ) is obtained as follows6.

1 First compute ξi = ξ0
i + υ0

i t, i = 1, . . . , N

2 On a space grid of M points reconstruct u∗(xj , t), j = 1, . . . ,M .

3 In each space cell j given a sample (ξi, υ
0
i ) with probability 1 − e−t/ε do the

following
◮ with probability Ef (u∗(xj , t))/u∗(xj , t) set υi = a
◮ with probability Eg(u∗(xj , t))/u∗(xj , t) set υi = −a.

4 otherwise set υi = υ0
i .

6L.P.,M.Seaid, ’07
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Applications to PDEs Conservation laws

Burgers’ equation
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Solution at t = 10 for F (u) = u2/2. Left: N = 1000 and ∆t = 0.1. Right:
N = 10000, ∆t = 0.01. We take the limit case ε = 0 with a = 1. The solution is
reconstructed on M = 100 grid points. The initial data is a Gaussian with zero
mean and unit variance.
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Applications to PDEs Conservation laws

Final considerations

Monte Carlo methods are a powerful tool for the approximation of PDEs in
presence of a large number of variables or in complicate geometries.

From the viewpoint of balance between accuracy and efficiency, roughly
speaking, they satisfy

|Error| ≈ 1√
Computational effort

.

They are much less sensitive to many common problems to deterministic
solvers like numerical dissipation, loss of physical properties like conservations
and positivity, mesh constructions and of course the dimensionality of the
problem.

For non positive solutions it is usually possible to apply the methods
introducing negative samples or equivalently particles with negative mass.

In some circumstances we can speed up the convergence of the method using
different techniques like importance sampling, control variates, antithetic
variables and quasi Monte Carlo strategies.
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