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A HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE
EQUATION OF GEOMETRICAL OPTICS WITH PARTIAL

TRANSMISSIONS AND REFLECTIONS∗
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Abstract. We construct a class of Hamiltonian-preserving numerical schemes for the Liouville
equation of geometrical optics, with partial transmissions and reflections. This equation arises in
the high frequency limit of the linear wave equation, with a discontinuous index of refraction. In
our previous work [Hamiltonian-preserving schemes for the Liouville equation of geometrical optics
with discontinuous local wave speeds, J. Comput. Phys. 214 (2006), pp. 672–697], we introduced
the Hamiltonian-preserving schemes for the same equation when only complete transmissions or
reflections occur at the interfaces. These schemes are extended in this paper to the general case of
partial transmissions and reflections. The key idea is to build into the numerical flux the behavior
of waves at the interface, namely, partial transmissions and reflections that satisfy Snell’s law of
refraction with the correct transmission and reflection coefficients. This scheme allows a hyperbolic
stability condition, under which positivity, and stabilities in both l1 and l∞ norms, are established.
Numerical experiments are carried out to study the numerical accuracy.
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1. Introduction. In this paper, we construct and study a numerical scheme for
the Liouville equation in d-dimension:

ft + Hv · ∇xf −Hx · ∇vf = 0 , t > 0, x,v ∈ Rd,(1.1)

where the Hamiltonian H possesses the form

H(x,v) = c(x)|v| = c(x)
√

v2
1 + v2

2 + · · · + v2
d(1.2)

with c(x) being the local wave speed of the medium (1/c(x) is the index of refrac-
tion); f(t,x,v) is the density distribution of particles depending on position x, time
t, and the slowness vector v. We are concerned with the case when c(x) ∈ W 1,∞ with
isolated discontinuities due to different media. The discontinuity in c corresponds to
an interface, and as a consequence waves crossing this interface will undergo trans-
missions and reflections.
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The bicharacteristics of this Liouville equation (1.1) satisfy the Hamiltonian sys-
tem

dx

dt
= c(x)

v

|v| ,
dv

dt
= −cx|v| .(1.3)

In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along
the particle trajectory, even when it is being transmitted or reflected by the interface.

This Liouville equation arises in the phase space description of geometrical optics.
It is the high frequency limit of the wave equation

utt − c(x)2Δu = 0, t > 0, x ∈ Rd.(1.4)

In the past, numerous numerical methods have been proposed for the wave equation
(1.4) with discontinuous coefficients c; see [32] and references therein. However, our
interest is in the high frequency waves, for which many current numerical methods
such as the phase space based level set methods, are based on the Liouville equation
(1.1) with smooth c; see [18, 25, 34]. Semiclassical limits of wave equations with
transmissions and reflections at the interfaces were studied in [1, 33, 39]. A Liouville
equation based level set method for the wave front, but with only reflection, was
introduced in [9].

In our previous work [28] two classes of numerical schemes that are suitable for the
Liouville equation (1.1) with a discontinuous local wave speed c(x) were constructed.
The designing principle there was to build the behavior of waves at the interface—
either cross over with a changed velocity according to a constant Hamiltonian, or be
reflected with a negative velocity (or momentum)—into the numerical flux; see also
earlier works [36, 27]. These schemes were called Hamiltonian-preserving schemes.
By providing an interface condition, it connects the two domains of Liouville equa-
tion with smooth coefficients. This gives a physically relevant selection criterion for a
unique solution to the governing equation, which is linearly hyperbolic with singular
(discontinuous or measure-valued) coefficients. For a plane wave hitting a flat inter-
face, it selects the solution at the interface governed by Snell’s law of refraction when
the wave length is much shorter than the width of the interface while both lengths
go to zero. Nevertheless, this is not the only physically relevant possibility to choose
a solution across the interface. When the wave length is much longer than the width
of the interface, while both lengths go to zero, the waves can be partially transmit-
ted and reflected, and the transmission and reflection coefficients can be analytically
computed [33].

The goal of this paper is to construct the numerical scheme which is suitable
to deal with partial transmissions and reflections, with computable transmission and
reflection coefficients. As in [28], we still use the Hamiltonian-preserving principle to
determine the transmitted velocity across the interface. The new contribution of this
paper is to incorporate the transmission and reflection coefficients into the numerical
flux, in order to treat partial transmissions and reflections. This new, explicit scheme,
like those in [27, 28], allows a typical hyperbolic stability condition Δt = O(Δx,Δv),
under which we also establish the positivity, and l1 and l∞ stability theory for the
scheme.

In geometrical optics applications, one has to solve the Liouville equation like
(1.1) with measure-valued initial data

f(0,x,v) = ρ0(x)δ(v − u0(x)) ;(1.5)
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see, for example, [38, 14, 25]. The solution at later time remains measure-valued (with
finite or even infinite number of concentrations-corresponding to multivalued solutions
in the physical space). Computation of multivalued solutions in geometrical optics
and more generally in nonlinear PDEs has been a very active area of recent research;
see [3, 4, 6, 5, 10, 17, 12, 13, 15, 19, 20, 21, 18, 26, 34, 37, 41].

Direct numerical methods (DNM) for the Liouville equation with measure-valued
initial data (1.5), which approximate the initial delta function first, then evolve the
Liouville equation, could suffer from a poor numerical resolution due to the numerical
approximation of the initial data of delta function as well as numerical dissipation
[24]. The level set method proposed in [24, 25] decomposes the density distribution
f into the bounded level set functions obeying the same Liouville equation, which
greatly enhances the numerical resolution. One only involves numerically the delta
function at the output time when the moments—which has delta functions in their
integrands—need to be evaluated numerically.

However, the extension of this density distribution decomposing approach to the
case of partial transmission and reflection is not straightforward. In particular, as
the number of transmissions and reflections increase in time, so does the number of
needed level set functions satisfying (1.1). This difficulty was already pointed out in
[9]. In this paper, when dealing with the measure-valued initial data (1.5) we will
just use the DNM. This does not offer the same resolution as those in [28]. It remains
an open question on how to extend the decomposition idea of [24, 25] to the case of
partial transmissions and reflections.

This paper is organized as follows. In section 2, we present the behavior of waves
at an interface, which guides the designing of our scheme. We also give an interface
condition (2.5) which allows us to define the analytic solution to the Liouville equation
(1.1) with singular coefficients. We present the scheme in 1d in section 3 and study
its positivity and stability in both l∞ and l1 norms. We extend the scheme to the two
space dimension in section 4 in the simple case of an interface aligning with the grids.
Numerical examples are given in section 5 to verify the accuracy of the scheme. We
make some concluding remarks in section 6.

2. The behavior of waves at an interface.

2.1. Transmissions and reflections at the interface. In geometrical optics,
when a wave moves with its density distribution governed by the Liouville equation
(1.1), its Hamiltonian H = c|v| should be preserved across the interface

c+|v+| = c−|v−|,(2.1)

where the superscripts ± indicate the right and left limits of the quantity at the
interface. The wave can be partly reflected and partly transmitted. The condition
(2.1) can be used to determine the particle velocity on one side of the interface from
its value on the other side. When a plane wave hits a flat interface, this condition is
equivalent to Snell’s law of refraction [28]:

sin θi
c−

=
sin θt
c+

(2.2)

and the reflection law

θr = θi,(2.3)
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Fig. 2.1. Wave transmission and reflection at an interface.

where θi, θt, and θr stand for angles of incident and transmitted and reflected waves;
see Figure 2.1. The reflection coefficient is given by

αR =

(
c+ cos θi − c− cos θt
c+ cos θi + c− cos θt

)2

(2.4)

while the transmission coefficient is αT = 1 − αR; see, for example, [1, 33, 39].
We will discuss this behavior in more detail in 1D and 2D, respectively.
• The 1D case is simpler. Consider the case when, at an interface, the charac-

teristic on the left of the interface is given by ξ− > 0. Then with probability

αR =

(
c+ − c−

c+ + c−

)2

, the wave is reflected by the interface with a new velocity

−ξ−, and with probability αT = 1 − αR it will cross the interface with the

new velocity ξ+ =
c−

c+
ξ− determined by (2.1).

• The 2D case, when an incident wave hits a vertical interface (see Figure 2.1).
Let x = (x, y),v = (ξ, η). Assume that the incident wave has a velocity
(ξ−, η−) to the left side of the interface, with ξ− > 0. Since the interface
is vertical, (1.3) implies that η is not changed when the wave crosses the
interface. There are two possibilities:

1)
(

c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2 > 0. In this case the wave can par-

tially transmit and partially be reflected. With probability αR =(
c+γ− − c−γ+

c+γ− + c−γ+

)2

the wave is reflected with a new velocity (−ξ−, η−),

where

γ+ = cos(θt) =
ξ+√

(ξ+)
2

+ (η−)
2
, γ− = cos(θi) =

ξ−√
(ξ−)

2
+ (η−)

2
.

With probability αT = 1 − αR it will be transmitted with the new
velocity (ξ+, η−), where

ξ+ =

√√√√(c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2,
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is obtained using (2.1).

2) c− < c+ and
(

c−

c+

)2

(ξ−)2 +

[(
c−

c+

)2

− 1

]
(η−)2 < 0. In this case, it

is impossible for the wave to transmit, so the wave will be completely
reflected with velocity (−ξ−, η−).

If ξ− < 0, similar behavior can also be analyzed using the constant Hamiltonian
condition (2.1).

2.2. The interface condition for density distribution. The solution to the
Liouville equation (1.1), which is linearly hyperbolic, can be solved by the method
of characteristics. Namely, the density distribution f remains a constant along a
bicharacteristic. However, with partial transmissions and reflections, this is no longer
true, since f needs to be determined from two bicharacteristics, one accounting for the
transmission and the other for reflection. Therefore, we use the following condition
at the interface:

f(t,x+,v+) = αT f(t,x−,v−) + αRf(t,x+,−v+),(2.5)

where v− is defined from v+ through the constant Hamiltonian condition (2.1), αT

and αR are the transmission and reflection coefficients which add up to 1 and vary
with v+ except in the 1D case. This is the main idea of this paper, and will be used
in constructing the numerical flux across the interface in the next section. As will
be seen in the next section, our scheme incorporates the interface condition into the
numerical flux.

For hyperbolic systems with discontinuous coefficients, renormalized solution was
introduced by DiPerna and Lions [11], and further extended in [7, 8, 22, 23] for
uniqueness and stability. The renormalized solution idea cannot be applied here since
the coefficients can be measure-valued. Our approach here is to use the interface
condition (2.5) to connect two domains in which the Liouville equation has smooth
Hamiltonians. Concretely, we define the solution for (1.1) when the local wave speed
has discontinuities as follows.

Definition 2.1. The analytic solution for the Liouville equation (1.1) when the
local wave speed c has discontinuities is constructed by method of characteristics away
from the interface plus the interface condition (2.5).

Below we justify the well-posedness of the initial value problem, for the simple
case of a step function c with a vertical interface. The more general situation remains
to be worked out and will be deferred to a future work.

Consider the simple case that the local wave speed c(x),x ∈ Rd is piecewise
constant as follows:

c(x) =

{
c− x1 < 0

c+ x1 > 0,
(2.6)

where we assume c− < c+. We will also exclude some singular points, working in the
domain defined by

Ω =
{
(x,v)|x ∈ Rd,v ∈ Rd\{0}

}
\{(x,v)|x1 = v1 = 0}.(2.7)

We have the following theorem.
Theorem 2.1. Assume the initial data f(0,x,v) has a compact support in v.

With the solution defined in Definition 2.1, the initial value problem to

ft + Hv · ∇xf −Hx · ∇vf = 0 , t > 0, (x,v) ∈ Ω ,(2.8)



1806 SHI JIN AND XIN WEN

with H given by (1.2), c given by (2.6), and Ω given by (2.7), is well-posed in l∞ and
l1 norms.

Proof. The proof is based on explicit construction of the analytical solution
f(T,x,v). The l∞ stability follows from the maximum principle, while the key for the
l1 stability is to prove that the Liouville theorem (volume preserving for a Hamiltonian
flow) holds at the interface for partial tranmissions and reflections.

To make the following description easier, we define a function extended from the
local wave speed (2.6)

c̃(x,v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c− x1 < 0

c+ x1 > 0
c− x1 = 0, v1 < 0

c+ x1 = 0, v1 > 0,

(2.9)

which is defined on the whole definition domain Ω. The values of c̃(x,v) on x1 = 0,
however, are not crucial as long as they are positive.

Split the domain Ω into two parts Ω = Ω1 ∪ Ω2 with

Ω1 =

{
(x,v) ∈ Ω

∣∣∣∣x1

(
x1 − c̃(x,v)

v1

|v|T
)

> 0 or

(
x1 − c̃(x,v)

v1

|v|T
)

= 0

}
,

Ω2 =

{
(x,v) ∈ Ω

∣∣∣∣x1

(
x1 − c̃(x,v)

v1

|v|T
)

< 0 or x1 = 0

}
,

where Ω1 consists of those points whose positions are not on the interface, and when
tracing back along the bicharacteristics, will not hit the interface within time T,
except possibly the end point. We further split domain Ω1,Ω2 as Ω1 = Ω−

1 ∪ Ω+
1 ,

Ω2 = Ω−
2 ∪ Ω+

2 with

Ω−
1 = {(x,v) ∈ Ω1|x1 < 0},

Ω+
1 = {(x,v) ∈ Ω1|x1 > 0},

Ω−
2 =

{
(x,v) ∈ Ω2

∣∣∣∣ (x1 − c̃(x,v)
v1

|v|T
)

> 0

}
,

Ω+
2 =

{
(x,v) ∈ Ω2

∣∣∣∣ (x1 − c̃(x,v)
v1

|v|T
)

< 0

}
.

For (x,v) ∈ Ω1, one has

f(T,x,v) = f

(
0,x − c−

v

|v|T ,v
)
, (x,v) ∈ Ω−

1 ,(2.10)

f(T,x,v) = f

(
0,x − c+

v

|v|T ,v
)
, (x,v) ∈ Ω+

1 .(2.11)

Define a subset of Ω−
2

Ω2,s =

{
(x,v) ∈ Ω−

2

∣∣∣∣ (c−

c+

)2

|v|2 ≤ v2
2 + · · · + v2

d

}
.

For (x,v) ∈ Ω2, one has

f(T,x,v) = f(0,xR,vR), (x,v) ∈ Ω2,s,(2.12)

f(T,x,v) = αT (vT)f(0,xT,vT) + αR(vR)f(0,xR,vR), (x,v) ∈ Ω2\Ω2,s,

(2.13)
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where αT (v), αR(v) denote the transmission and reflection coefficients determined by
the incident wave slowness vector v, with condition αT (v)+αR(v) = 1. In geometrical
optics, the transmission coefficient also satisfies αT (vT) = αT (vR) for the slowness
vectors vT,vR appearing in (2.13), thus it holds that αT (vT) + αR(vR) = 1. This
contributes to the maximum principle of the solution for (1.1). The positions and
slowness vectors xT,vT,xR,vR can be explicitly expressed by x,v as follows

v2
T,1 =

[
ĉ |v|
ĉT

]2
− v2

2 − · · · − v2
d, vT,1v1 > 0,(2.14)

vT,i = vi, i = 2, . . . , d,(2.15)

xT,1 =
(ĉT )2vT,1

|v|ĉ

(
x1|v|
ĉ v1

− T

)
,(2.16)

xT,i = xi − vi
x1

v1
+

(ĉT )2vi
|v|ĉ

(
x1|v|
ĉ v1

− T

)
, i = 2, . . . , d,(2.17)

vR,1 = −v1, vR,i = vi, i = 2, . . . , d,(2.18)

xR,1 =
ĉ v1

|v|

(
T − x1|v|

ĉ v1

)
,(2.19)

xR,i = xi − vi
x1

v1
− ĉ vi

|v|

(
T − x1|v|

ĉ v1

)
, i = 2, . . . , d,(2.20)

where ĉ, ĉT are given by

ĉ = c−, ĉT = c+, for (x,v) ∈ Ω−
2 ,

ĉ = c+, ĉT = c−, for (x,v) ∈ Ω+
2 .

Since the solution f(T,x,v) can be explicitly expressed as (2.10), (2.11), (2.12),
and (2.13), we have proved the existence and uniqueness of the solution for the initial
value problem in Theorem 2.1. The l∞ stability follows easily from the maximum
principle and linearity of the Liouville equation.

In the following we prove the l1-stability of the solution for this initial value
problem. Define the l1-norm of the solution as

|f |1 =

∫
Ω

|f(t,x,v)|dxdv.

Due to the linearity of the Liouville equation, one only needs to prove that when the
initial value is bounded in l1-norm, then the solution remains bounded in l1-norm
at later time. Assume |f(0,x,v)|1 exists, we now investigate the relation between
|f(T,x,v)|1 and |f(0,x,v)|1.

Define the sets

Ω−
3 =

{
(x,v) ∈ Ω

∣∣∣∣ ∃(y,v) ∈ Ω−
1 s.t. x = y − c(y)

v

|v|T
}
,

Ω+
3 =

{
(x,v) ∈ Ω

∣∣∣∣ ∃(y,v) ∈ Ω+
1 s.t. x = y − c(y)

v

|v|T
}
,

Ω4,s =

{
(x,v) ∈ Ω

∣∣∣∣x1 < 0, x1 + c−
v1

|v|T ≥ 0,

(
c−

c+

)2

|v|2 ≤ v2
2 + · · · + v2

d

}
,

Ω4 = Ω\{Ω−
3 ∪ Ω+

3 ∪ Ω4,s}.
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One has

|f(T,x,v)|1 =

∫
Ω−

1

|f(T,x,v)|dxdv +

∫
Ω+

1

|f(T,x,v)|dxdv

+

∫
Ω2,s

|f(T,x,v)|dxdv +

∫
Ω2\Ω2,s

|f(T,x,v)|dxdv.(2.21)

For the first part in (2.21), since the map (x,v) → (x + c− v
|v|T ,v) is volume-

preserving, (2.10) gives∫
Ω−

1

|f(T,x,v)|dxdv =

∫
Ω−

1

∣∣∣∣f (0,x − c−
v

|v|T ,v
)∣∣∣∣dxdv(2.22)

=

∫
Ω−

3

|f(0,x,v)|dxdv.

In the same way, the second part in (2.21) holds∫
Ω+

1

|f(T,x,v)|dxdv =

∫
Ω+

3

|f(0,x,v)|dxdv.(2.23)

To calculate the last two parts in (2.21), we need to investigate the Jacobians
of the maps (xT,vT)→ (x,v) and (xR,vR)→ (x,v). From (2.14)–(2.20), these two
maps can be explicitly written out. The nonzero elements in the two Jacobian matri-
ces include

∂x1

∂xT,1
,
∂x1

∂vT,1
,
∂x1

∂vT,2
, . . . ,

∂x1

∂vT,d
,

∂xi

∂xT,1
,
∂xi

∂xT,i
,
∂xi

∂vT,1
,
∂xi

∂vT,2
, . . . ,

∂xi

∂vT,d
, i = 2, . . . , d,

∂v1

∂vT,i
, i = 1, 2, . . . , d,

∂vi
∂vT,i

, i = 2, . . . , d,

∂x1

∂xR,1
,
∂x1

∂vR,1
,
∂x1

∂vR,2
, . . . ,

∂x1

∂vR,d
,

∂xi

∂xR,1
,
∂xi

∂xR,i
,

∂xi

∂vR,1
,

∂xi

∂vR,2
, . . . ,

∂xi

∂vR,d
, i = 2, . . . , d,

∂vi
∂vR,i

, i = 1, 2, . . . , d,

from which only the diagonal elements influence the Jacobians. They are

∂x1

∂xT,1
=

(
ĉ

ĉT

)2
v1

vT,1
,

∂xi

∂xT,i
= 1, i = 2, . . . , d,

∂v1

∂vT,1
=

(
ĉT
ĉ

)2
vT,1

v1
,

∂vi
∂vT,i

= 1, i = 2, . . . , d,
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∂x1

∂xR,1
= −1,

∂xi

∂xR,i
= 1, i = 2, . . . , d,

∂v1

∂vR,1
= −1,

∂vi
∂vR,i

= 1, i = 2, . . . , d.

Thus it is verified that the two maps (xT,vT) → (x,v) and (xR,vR) → (x,v) are
volume-preserving.

For the third part in (2.21), from (2.12) one has∫
Ω2,s

|f(T,x,v)|dxdv =

∫
Ω2,s

|f(0,xR,vR)|dxdv =

∫
Ω4,s

|f(0,x,v)|dxdv.(2.24)

For the fourth part in (2.21), from (2.13) one has∫
Ω2\Ω2,s

|f(T,x,v)|dxdv =

∫
Ω2\Ω2,s

αT (vT) |f(0,xT,vT)|dxdv

+

∫
Ω2\Ω2,s

αR(vR) |f(0,xR,vR)|dxdv

=

∫
Ω4

αT (v) |f(0,x,v)|dxdv +

∫
Ω4

αR(v) |f(0,x,v)|dxdv

=

∫
Ω4

|f(0,x,v)|dxdv.(2.25)

Together with (2.21), (2.22), (2.23), (2.24), and (2.25), one gets

|f(T,x,v)|1 =

∫
Ω−

3

|f(0,x,v)|dxdv +

∫
Ω+

3

|f(0,x,v)|dxdv

+

∫
Ω4,s

|f(0,x,v)|dxdv +

∫
Ω4

|f(0,x,v)|dxdv

= |f(0,x,v)|1.

This is the l1-stability—in fact l1 preservation—of the solution for the initial value
problem in Theorem 2.1.

Remark 2.1. In [2], a classical-classical coupling model that connects two domains
of classical mechanics with constant potentials with a classical domain [a, b] in between
where the potential is variable was introduced, where the interface conditions at a and
b were given. When a = b, their interface conditions reduce to (2.5).

3. The scheme in 1D.

3.1. The numerical flux. We now describe our finite difference scheme for the
1D Liouville equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0 .(3.1)

We employ a uniform mesh with grid points at xi+ 1
2
, i = 0, . . . , N, in the x-

direction and ξj+ 1
2
, j = 0, . . . ,M in the ξ-direction. The cells are centered at (xi, ξj),

i = 1, . . . , N, j = 1, . . . ,M with xi = 1
2 (xi+ 1

2
+ xi− 1

2
) and ξj = 1

2 (ξj+ 1
2

+ ξj− 1
2
). The

uniform mesh size is denoted by Δx = xi+ 1
2
−xi− 1

2
,Δξ = ξj+ 1

2
−ξj− 1

2
. We also assume

a uniform time step Δt and the discrete time is given by 0 = t0 < t1 < · · · < tL = T .
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We introduce the mesh ratios λt
x = Δt

Δx , λ
t
ξ = Δt

Δξ , assumed to be fixed. The cell
average of f is defined by

fij =
1

ΔxΔξ

∫ x
i+ 1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x, ξ, t)dξdx.

We assume the local wave speed is Lipschitz continuous except at its isolated
discontinuous points. Assume that the discontinuous points of the wave speed c are
located at the grid points. Let the left and right limits of c(x) at point xi+1/2 be c+

i+ 1
2

and c−
i+ 1

2

, respectively. Note that if c is continuous at xj+1/2, then c+
i+ 1

2

= c−
i+ 1

2

. We

approximate c by a piecewise linear function

c(x) ≈ c+j−1/2 +
c−j+1/2 − c+j−1/2

Δx
(x− xj−1/2) .

We also define the average wave speed as ci = 1
2 (c+

i− 1
2

+ c−
i+ 1

2

). We will adopt

the flux splitting technique used in [36, 27, 28]. The semidiscrete scheme (with time
continuous) reads

(fij)t +
cisign(ξj)

Δx
(f−

i+ 1
2 ,j

− f+
i− 1

2 ,j
) −

c−
i+ 1

2

− c+
i− 1

2

ΔxΔξ
|ξj |(fi,j+ 1

2
− fi,j− 1

2
) = 0,(3.2)

where the numerical fluxes fi,j+ 1
2

are defined using the upwind discretization. Since

the characteristics of the Liouville equation may be different on the two sides of the
interface, the corresponding numerical fluxes should also be different. The essential
part of our algorithm is to define the split numerical fluxes f−

i+ 1
2 ,j

, f+
i− 1

2 ,j
at each cell

interface. We will use (2.5) to define these fluxes.
Assume c is discontinuous at xi+ 1

2
. Consider the case ξj > 0. Using upwind

scheme, f−
i+ 1

2 ,j
= fij . However, by (2.5),

f+
i+ 1

2 ,j
= αT f(t, x−

i+ 1
2

, ξ−) + αRf(t, x+
i+ 1

2

,−ξ+)

while ξ− is obtained from ξ+ = ξj from (2.1). Since ξ− may not be a grid point, we
have to define it approximately. One can first locate the two cell centers that bound
this velocity, and then use a linear interpolation to evaluate the needed numerical flux
at ξ−. The case of ξj < 0 is treated similarly. The detailed algorithm to generate the
numerical flux is given below.

Algorithm I
• if ξj > 0

f−
i+ 1

2 ,j
= fij ,

ξ′ =
c+
i+ 1

2

c−
i+ 1

2

ξj

• if ξk ≤ ξ′ < ξk+1 for some k

αR =

(
c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR

f+
i+ 1

2 ,j
= αT

(
ξk+1 − ξ′

Δξ
fi,k +

ξ′ − ξk
Δξ

fi,k+1

)
+ αRfi+1,k′
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where ξk′ = −ξk
• end

• if ξj < 0
f+
i+ 1

2 ,j
= fi+1,j ,

ξ′ =
c−
i+ 1

2

c+
i+ 1

2

ξj

• if ξk ≤ ξ′ < ξk+1 for some k

αR =

(
c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR

f−
i+ 1

2 ,j
= αT

(
ξk+1 − ξ′

Δξ
fi+1,k +

ξ′ − ξk
Δξ

fi+1,k+1

)
+ αRfi,k′

where ξk′ = −ξk
• end

The above algorithm for evaluating numerical fluxes is of first order. One can
obtain a second order flux by incorporating the slope limiter, such as the van Leer or
minmod slope limiter [31], into the above algorithm. This can be achieved by replacing
fik with fik+ Δx

2 sik, and replacing fi+1,k with fi+1,k−Δx
2 si+1,k in the above algorithm

for all possible index k, where sik is the slope limiter in the x-direction.
After the spatial discretization is specified, one can use any time discretization

for the time derivative.

3.2. Positivity and l∞ contraction. Since the exact solution of the Liouville
equation is positive when the initial profile is, it is important that the numerical
solution inherits this property.

We only consider the scheme using the first order numerical flux, and the for-
ward Euler method in time. Without loss of generality, we consider the case ξj > 0
and c−

i+ 1
2

< c+
i− 1

2

for all i (the other cases can be treated similarly with the same

conclusion). The scheme reads

fn+1
ij − fn

ij

Δt
+ci

fij − (d1fi−1,k + d2fi−1,k+1 + αRfi,k′)

Δx
−
c−
i+ 1

2

− c+
i− 1

2

Δx
ξj
fij − fi,j−1

Δξ
= 0,

where d1, d2, α
R are nonnegative and d1 +d2 = αT = 1−αR. We omit the superscript

n of f . The above scheme can be rewritten as

fn+1
ij =

⎛⎝1 − ciλ
t
x −

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξ

⎞⎠fij + ciλ
t
x

(
d1fi−1,k + d2fi−1,k+1 + αRfi,k′

)

+

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξfi,j−1 .(3.3)

Now we investigate the positivity of scheme (3.3). This is to prove that if fn
ij ≥ 0

for all (i, j), then this is also true for fn+1. Clearly one just needs to show that all of
the coefficients before fn are nonnegative. A sufficient condition for this is clearly

1 − ciλ
t
x −

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣
Δx

|ξj |λt
ξ ≥ 0,
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or

Δtmax
i,j

⎡⎢⎢⎣ ci
Δx

+

∣∣∣c−
i+ 1

2

−c+
i− 1

2

∣∣∣
Δx |ξj |
Δξ

⎤⎥⎥⎦ ≤ 1.(3.4)

The quantity

∣∣c−
i+ 1

2

−c+
i− 1

2

∣∣
Δx now represents the wave speed gradient at its smooth

point, which has a finite upper bound since c ∈ W 1,∞. In addition, typically f has a
compact support, so in practical computation ξ is confined in a bounded set. Thus
our scheme allows a time step Δt = O(Δx,Δξ).

According to the study in [35], our second order scheme, which incorporates a
slope limiter into the first order scheme, is positive under the half CFL condition,
namely, the constant on the right-hand side of (3.4) is 1/2.

The above conclusion is drawn on the forward Euler time discretization. One can
draw the same conclusion for the second order TVD Runge–Kutta time discretization
[40].

The l∞-contracting property of this scheme:

‖fn‖∞ ≤ ‖f0‖∞
follows easily, because the coefficients in (3.3) are positive and the sum of them is 1.

3.3. The l1-stability of the scheme. In this section we prove the l1-stability
of the scheme (with the first order numerical flux and the forward Euler method
in time). For simplicity, we consider the case when the wave speed has only one
discontinuity at grid point xm+ 1

2
with c−

m+ 1
2

> c+
m+ 1

2

, and c′(x) > 0 at smooth

points. The other cases, namely, when c′(x) ≤ 0, or the wave speed having several
discontinuity points with increased or decreased jumps, can be discussed similarly.
Denote λc ≡ c+

m+ 1
2

/c−
m+ 1

2

< 1.

We consider the general case that ξ1 < 0, ξM > 0. For this case, as adopted in [25,
28], the computational domain should exclude a set Oξ =

{
(x, ξ) ∈ R

2 |ξ = 0
}
, which

causes singularity in the velocity field. For example, we can exclude the following
index set:

Do =

{
(i, j)

∣∣∣|ξj | < Δξ

2

}
,

from the computational domain.
Since c(x) has a discontinuity, we also define an index set

D4
l = {(i, j)|xi ≤ xm, ξj < λcξ1}.

As mentioned in [28], D4
l represents the area where waves come from outside of

the domain [x1, xN ] × [ξ1, ξM ]. In order to implement our scheme conveniently, this
index set is also excluded from the computational domain. Thus the computational
domain is chosen as

Ed = {(i, j)|i = 1, . . . , N, j = 1, . . . ,M} \
{
Do ∪D4

l

}
.(3.5)

As a result of excluding the index set Do from the computational domain, the
computational domain is split into two nonoverlapping parts:

Ed = {(i, j) ∈ Ed|ξj > 0} ∪ {(i, j) ∈ Ed|ξj < 0} ≡ E+
d ∪ E−

d .
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In [28] we analyzed the l1-stability of the scheme on E+
d and E−

d separately.
Here we will conduct the analysis on the full phase space Ed since transmission and
reflection waves coexist at the interface.

We define the l1-norm of a numerical solution uij in the set Ed to be

|f |1 =
1

Nd

∑
(i,j)∈Ed

|fij |(3.6)

with Nd being the number of elements in Ed.
Given the initial data f0

ij , (i, j) ∈ Ed. Denote the numerical solution at time T to

be fL
ij , (i, j) ∈ Ed. To prove the l1-stability, we need to show that |fL|1 ≤ C|f0|1.
Due to the linearity of the scheme, the equation for the error between the an-

alytical and the numerical solutions is the same as (3.3), so in this section, fij will
denote the error. We assume there is no error at the boundary, thus fn

ij = 0 at the

boundary. If the l1-norm of the error introduced at each time step in the incoming
boundary cells is ensured to be o(1) part of |fn|1, our following analysis still applies.

Now denote

Ai =
1

Δx

∣∣∣c−
i+ 1

2

− c+
i− 1

2

∣∣∣ .(3.7)

Since c(x) is Lipschitz continuous at its smooth part, there exists an Au > 0, such
that Ai < Au,∀i. Assume also that there is an Cm > 0 such that ci > Cm,∀i. The
finite difference scheme is given as follows:

• When ξj > 0
1) if i = m + 1,

fn+1
ij =

(
1 −Ai|ξj |λt

ξ − ciλ
t
x

)
fij + Ai|ξj |λt

ξfi,j+1 + ciλ
t
xfi−1,j ,(3.8)

2)

fn+1
m+1,j =

(
1 −Am+1|ξj |λt

ξ − cm+1λ
t
x

)
fm+1,j + Am+1|ξj |λt

ξfm+1,j+1

+ cm+1λ
t
x(dj1fm,k + dj2fm,k+1 + αRfm+1,k′).(3.9)

• When ξj < 0
3) if i = m,

fn+1
ij =

(
1 −Ai|ξj |λt

ξ − ciλ
t
x

)
fij + Ai|ξj |λt

ξfi,j+1 + ciλ
t
xfi+1,j ,(3.10)

4)

fn+1
mj =

(
1 −Am|ξj |λt

ξ − cmλt
x

)
fmj + Am|ξj |λt

ξfm,j+1

+ cmλt
x(dj1fm+1,k + dj2fm+1,k+1 + αRfm,k′),(3.11)

where 0 ≤ dj1, dj2 ≤ 1 and dj1 + dj2 = αT = 1− αR = 1. In (3.9) k is determined by

ξk ≤ λcξj < ξk+1 and ξk′ = −ξk. In (3.11) k is determined by ξk ≤ ξj
λc

< ξk+1 and
ξk′ = −ξk.

When summing up all absolute values of fn+1
ij in (3.8)–(3.11), one typically gets

the following inequality:

|fn+1|1 ≤ 1

Nd

∑
(i,j)∈Ed

αij |fn
ij |,(3.12)
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where the coefficients αij are positive. One can check that, under the CFL condition
(3.4), αij ≤ 1 + 2AuΔt except for possibly (i, j) ∈ D−

m+1

⋃
D+

m, where

D−
m+1 = {(i, j) ∈ E−

d |i = m + 1}, D+
m = {(i, j) ∈ E+

d |i = m}.

We next derive the bounds for M−,M+ defined as

M− = max
(m+1,j)∈D−

m+1

αm+1,j , M+ = max
(m,j)∈D+

m

αm,j .

Define the set

Sm+1
j =

{
j′
∣∣∣ξj′ < 0,

∣∣∣∣ξj′λc
− ξj

∣∣∣∣ < Δξ

}
for (m + 1, j) ∈ D−

m+1.

Let the number of elements in Sm+1
j be Nm+1

j . One can check that Nm+1
j ≤

2λc + 1 because every two elements j′1, j
′
2 ∈ Sm+1

j satisfy

∣∣∣∣ ξj′1λc
−

ξj′
2

λc

∣∣∣∣ ≥ Δξ
λc

.

On the other hand, one can easily check from (3.9) and (3.11), for (m + 1, j) ∈
D−

m+1, that

αm+1,j < 1−cm+1λ
t
x+cmλt

x (2λc + 1)αT+αRcm+1λ
t
x = 1+αT (cm+cm+1)λ

t
x+O(Δx),

so for sufficiently small Δx, M− can be bounded by

M− < 1 + 2αT (cm + cm+1)λ
t
x.

Similarly, one can prove for sufficiently small Δx, M+ is also bounded by

M+ < 1 + 2αT (cm + cm+1)λ
t
x.

Denote M ′ = 2αT (cm + cm+1)λ
t
x. From (3.12),

|fn+1|1 < (1 + 2AuΔt) |fn|1 +
M ′

Nd

∑
(m+1,j)∈D−

m+1

|fn
m+1,j |+

M ′

Nd

∑
(m,j)∈D+

m

|fn
m,j |.

(3.13)

Consecutively using (3.13) gives

|fL|1 < (1 + 2AuΔt)
L

⎧⎪⎨⎪⎩|f0|1 +
M ′

Nd

L−1∑
n=0

⎡⎢⎣ ∑
(m+1,j)∈D−

m+1

|fn
m+1,j |

⎤⎥⎦
+

M ′

Nd

L−1∑
n=0

⎡⎣ ∑
(m,j)∈D+

m

|fn
m,j |

⎤⎦⎫⎬⎭ .(3.14)

Define

S1 =

L−1∑
n=0

⎡⎢⎣ ∑
(m+1,j)∈D−

m+1

|fn
m+1,j |

⎤⎥⎦ , S2 =

L−1∑
n=0

⎡⎣ ∑
(m,j)∈D+

m

|fn
m,j |

⎤⎦ .(3.15)
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These two terms can be proved in the same way as in [29] to get

S1, S2 < CTNd|f0|1,(3.16)

where

CT ≡ exp

(
2Au

Cm
(xN − x1)

)
1

Cmλt
x

.(3.17)

Combing (3.14) and (3.16),

|fL|1 < (1 + 2AuΔt)
L {|f0|1 + 2CTM

′|f0|1
}

= exp (2AuT ) [1 + 2CTM
′] |f0|1

≡ C|f0|1,

where C ≡ exp (2AuT ) [1 + 2CTM
′].

Thus we prove the following theorem.
Theorem 3.1. Let c(x) ∈ W 1,∞ have a discontinuity at one point, and be

bounded below from zero, c(x) > Cm > 0. Assume f0 has a finite l1-norm defined
(3.6) with a compact support in ξ. Then under the hyperbolic CFL condition (3.4),
the solution yielded by the scheme (3.8)–(3.11) is stable in l1-norm:

|fL|1 < C|f0|1.

4. The scheme in two space dimension. Consider the 2D Liouville equation

ft +
c(x, y)ξ√
ξ2 + η2

fx +
c(x, y)η√
ξ2 + η2

fy − cx
√
ξ2 + η2fξ − cy

√
ξ2 + η2fη = 0.(4.1)

We employ a uniform mesh with grid points at xi+ 1
2
, yj+ 1

2
, ξk+ 1

2
, ηl+ 1

2
in each

direction. The cells are centered at (xi, yj , ξk, ηl) with xi = 1
2 (xi+ 1

2
+ xi− 1

2
), yj =

1
2 (yj+ 1

2
+ yj− 1

2
), ξk = 1

2 (ξk+ 1
2

+ ξk− 1
2
), ηl = 1

2 (ηl+ 1
2

+ ηl− 1
2
). The mesh size is denoted

by Δx = xi+ 1
2
− xi− 1

2
,Δy = yj+ 1

2
− yj− 1

2
,Δξ = ξk+ 1

2
− ξk− 1

2
,Δη = ηl+ 1

2
− ηl− 1

2
. We

define the cell average of f as

fijkl =
1

ΔxΔyΔξΔη

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ ξ
k+ 1

2

ξ
k− 1

2

∫ η
l+ 1

2

η
l− 1

2

f(x, y, ξ, η, t)dηdξdydx.

Similar to the 1D case, we approximate c(x, y) by a piecewise bilinear function, and,
for convenience, we always provide two interface values of c at each cell interface.
When c is smooth at a cell interface, the two potential interface values are identical.
We also define the average wave speed in a cell by averaging the four wave speed
values at the cell interface:

cij =
1

4
(c+

i− 1
2 ,j

+ c−
i+ 1

2 ,j
+ c+

i,j− 1
2

+ c−
i,j+ 1

2

).

The 2D Liouville equation (4.1) can be semidiscretized as

(fijkl)t +
cijξk

Δx
√

ξ2
k + η2

l

(
f−
i+ 1

2 ,jkl
− f+

i− 1
2 ,jkl

)
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+
cijηl

Δy
√
ξ2
k + η2

l

(
f−
i,j+ 1

2 ,kl
− f+

i,j− 1
2 ,kl

)
−

c−
i+ 1

2 ,j
− c+

i− 1
2 ,j

ΔxΔξ

√
ξ2
k + η2

l

(
fij,k+ 1

2 ,l
− fij,k− 1

2 ,l

)
−

c−
i,j+ 1

2

− c+
i,j− 1

2

ΔyΔη

√
ξ2
k + η2

l

(
fijk,l+ 1

2
− fijk,l− 1

2

)
= 0,

where the interface values fij,k+ 1
2 ,l

, fijk,l+ 1
2

are provided by the upwind approxi-

mation, and the split interface values f−
i+ 1

2 ,jkl
, f+

i− 1
2 ,jkl

, f−
i,j+ 1

2 ,kl
, f+

i,j− 1
2 ,kl

should be

obtained using a similar but slightly different algorithm for the 1D case. For example,
to evaluate f±

i+ 1
2 ,jkl

we can extend Algorithm I as

Algorithm I in 2D

• if ξk > 0
f−
i+ 1

2 ,jkl
= fijkl, ξk1 = −ξk

• if

(
C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

(ξk)
2

+

⎡⎣(C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

− 1

⎤⎦ (ηl)
2
> 0

ξ− =

√√√√√(C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

(ξk)
2

+

⎡⎣(C+

i+ 1
2
,j

C−
i+ 1

2
,j

)2

− 1

⎤⎦ (ηl)
2

• if ξk′ ≤ ξ− < ξk′+1 for some k′

γ+ =
ξk√

(ξk)
2

+ (ηl)
2
, γ− =

ξ−√
(ξ′)

2
+ (ηl)

2

αR =

(
c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f+
i+ 1

2 ,jkl
= αT

(
ξk′+1 − ξ−

Δξ
fij,k′,l +

ξ− − ξk′

Δξ
fij,k′+1,l

)
+αRfi+1,j,k1,l

• end
• else

f+
i+ 1

2 ,jkl
= fi+1,j,k1,l

• end
• if ξk < 0

f+
i+ 1

2 ,jkl
= fi+1,jkl, ξk1

= −ξk

• if

(
C−

i+ 1
2
,j

C+

i+ 1
2
,j

)2

(ξk)
2

+

⎡⎣(C−
i+ 1

2
,j

C+

i+ 1
2
,j

)2

− 1

⎤⎦ (ηl)
2
> 0

ξ+ = −

√√√√√(C−
i+ 1

2
,j

C+

i+ 1
2
,j

)2

(ξk)
2

+

⎡⎣(C−
i+ 1

2
,j

C+

i+ 1
2
,j

)2

− 1

⎤⎦ (ηl)
2

• if ξk′ ≤ ξ+ < ξk′+1 for some k′

γ+ =
|ξ+|√

(ξ+)
2

+ (ηl)
2
, γ− =

|ξk|√
(ξk)

2
+ (ηl)

2
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αR =

(
c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f−
i+ 1

2 ,jkl
= αT

(
ξk′+1 − ξ+

Δξ
fi+1,j,k′,l +

ξ+ − ξk′

Δξ
fi+1,j,k′+1,l

)
+ αRfij,k1,l

• end
• else

f−
i+ 1

2 ,jkl
= fi,j,k1,l where ξk1 = −ξk

• end

The flux f±
i,j+ 1

2 ,kl
can be constructed similarly.

As introduced in section 2, the essential difference between the 1D and 2D flux
definitions is that in the 2D case, the phenomenon that a wave is completely reflected
at the interface does occur, while in 1D, the transmission and reflection waves always
coexist at the interface.

Since the wave speed c ∈ W 1,∞, this scheme, similar to the 1D scheme, is also
subject to a hyperbolic CFL condition under which the scheme is positive.

5. Numerical examples. In this section we present numerical examples to
demonstrate the validity of the proposed scheme and to study the numerical accuracy.
In the numerical computations the second order TVD Runge–Kutta time discretiza-
tion [40] is used. We use the second order scheme with the van Leer slope limiter in
constructing the numerical fluxes except for Example 5.2.

Example 5.1. A 1D problem with exact L∞-solution. Consider the 1D Liouville
equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0(5.1)

with a discontinuous wave speed given by

c(x) =

{
0.6 x < 0

0.2 x > 0.

The initial data is given by

f(x, ξ, 0) =

⎧⎪⎪⎨⎪⎪⎩
1 x < 0, ξ > 0,

√
x2 + 4ξ2 < 1,

1 x > 0, ξ < 0,
√
x2 + ξ2 < 1,

0 otherwise.

(5.2)

In this example the reflection and transmission coefficients αR, αT at the interface

are αR =
1

4
, αT =

3

4
. The exact solution for f at t = 1 is given by
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Fig. 5.1. Example 5.1, the nonzero part of the exact solution f(x, ξ, 1) depicted on the 400×400
mesh. The horizontal axis is the position, the vertical axis is the slowness.

f(x, ξ, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αT 0 < x < 0.2,
√

1 − (0.2 − x)2 < ξ < 1.5
√

1 − (3x− 0.6)2;

1 0 < x < 0.2, 0 < ξ <
√

1 − (0.2 − x)2;

1 0 < x < 0.8, −
√

1 − (x + 0.2)2 < ξ < 0;

1 − 0.4 < x < 0, 0 < ξ <
1

2

√
1 − (x− 0.6)2;

1 − 0.6 < x < 0, −1

3

√
1 −
(x

3
+ 0.2

)2

< ξ < 0;

αR − 0.6<x< 0, −1

2

√
1− (x+ 0.6)2 <ξ < − 1

3

√
1−

(x
3

+ 0.2
)2

;

0 otherwise,
(5.3)
as shown in Figure 5.1.

We are also interested in computing the moments of f , which include the density

ρ(x, t) =

∫
f(x, ξ, t)dξ

and the averaged slowness

u(x, t) =

∫
f(x, ξ, t)ξdξ

/
ρ(x, t).
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At t = 1, the exact density is

ρ(x, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1 − (x + 0.2)2 0.2 < x < 0.8;

1.5αT
√

1 − (3x− 0.6)2 + αR
√

1 − (0.2 − x)2

+
√

1 − (x + 0.2)2 0 < x < 0.2;

αT

3

√
1 −
(x

3
+ 0.2

)2

+
αR

2

√
1 − (x + 0.6)2 − 0.6 < x < −0.4;

αT

3

√
1 −
(x

3
+ 0.2

)2

+
αR

2

√
1 − (x + 0.6)2

+
1

2

√
1 − (x− 0.6)2 − 0.4 < x < 0,

0 otherwise.
(5.4)

The averaged slowness only has definition in [−0.6, 0.8] since the density is zero outside
this interval. The exact averaged slowness in [−0.6, 0.8] is

u(x, 1) =
1

2ρ(x, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
1 − (x + 0.2)2

]
0.2 < x < 0.8;

2.25αT
[
1 − (3x− 0.6)2

]
+ αR

[
1 − (0.2 − x)2

]
−
[
1 − (x + 0.2)2

]
0 < x < 0.2;

−αT

9

[
1 −
(x

3
+ 0.2

)2
]
− αR

4

[
1 − (x + 0.6)2

]
− 0.6 < x < −0.4;

−αT

9

[
1 −
(x

3
+ 0.2

)2
]
− αR

4

[
1 − (x + 0.6)2

]
+

1

4

[
1 − (x− 0.6)2

]
− 0.4 < x < 0.

(5.5)

We choose the time step as Δt = 1
2Δξ. The computational domain is chosen

as [x, ξ] ∈ [−1.5, 1.5] × [−1.6, 1.6]. Table 5.1 compares the l1-error of the numerical
solutions for f , ρ on [−1.5, 1.5] and u on [−0.6, 0.8] computed with different meshes,
respectively.

The convergence rate of f in the l1-norm is shown to be about 0.74. This agrees
with the well-established theory [30, 42], that the l1-error by finite difference scheme
for a discontinuous solution of a linear hyperbolic equation is at most half order. The
convergence rate of ρ and u are shown to be about 0.74 and 0.98, respectively, since
the solutions also contain discontinuities away from the interface.

Figure 5.2 shows the numerical density ρ and averaged slowness u computed with
a 400× 400 cell along with the exact solutions in the physical space.

Example 5.2. Computing the physical observables of a 1D problem with measure-
valued solution. Consider the 1D Liouville equation (5.1), where the wave speed is a
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Table 5.1

l1 error of the numerical solutions with different meshes.

meshes 50 × 50 100 × 100 200× 200 400× 400

f 0.179090 0.104788 0.064989 0.038535

ρ 0.124361 0.079007 0.043248 0.025187

u 0.143083 0.063068 0.043079 0.019870

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5
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ρ

−0.5 0 0.5
−0.5
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−0.3
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−0.1

0

0.1

0.2

0.3

x

u

Fig. 5.2. Example 5.1, the density ρ and averaged slowness u at t = 1. Solid line: the exact
solution; “o”: the numerical solutions using the 400 × 400 mesh. Left: the density ρ; Right: the
averaged slowness u.

well-shaped function

c(x) =

{
0.6 − 0.4 < x < 0.4

1 else

and the initial data is a delta-function

f(x, ξ, 0) = δ(ξ − w(x))(5.6)

with

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5, x ≤ −1.6;

0.5 − 0.4

(1.6)2
(x + 1.6)2, −1.6 < x ≤ 0;

−0.5 +
0.4

(1.6)2
(x− 1.6)2, 0 < x < 1.6;

−0.5, x ≥ 1.6 .

(5.7)

Figure 5.2 plots w(x) in dashed lines.

In this example we are interested in the approximation of the density

ρ(x, t) =

∫
f(x, ξ, t)dξ ,
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Fig. 5.3. Example 5.2, slowness. Dashed line: the initial slowness w(x); Solid line: the slowness
at t = 1. The horizontal axis is the position, the vertical axis is the slowness.

and the averaged slowness

u(x, t) =

∫
f(x, ξ, t)ξdξ∫
f(x, ξ, t)dξ

.

In the computation, we first approximate the delta function initial data (5.6) by
a discrete delta function [16]:

δβ(x) =

⎧⎪⎨⎪⎩
1

β

(
1 −
∣∣∣∣xβ
∣∣∣∣) , | xβ | ≤ 1 ,

0, | xβ | > 1 .

(5.8)

If |ξj − w(xi)| < β, set f0
ij = 1

β

(
1 − | ξj−w(xi)

β |
)
, and f0

ij = 0 otherwise. The choice of
the discrete delta function support size β will be made more precise later. We then
use the Hamiltonian-preserving scheme to solve the Liouville equation (5.1). Then
the moments are recovered by

ρni =
∑
j

fn
ijΔξ, un

i =

⎛⎝∑
j

fn
ijξjΔξ

⎞⎠/ρni .

With partial transmissions and reflections, the exact multivalued slowness at t = 1
is depicted as the solid line in Figure 5.3.

In this example the reflection and transmission coefficients αR, αT at the wave

speed interface are αR =
1

16
, αT =

15

16
. At t = 1, the exact density and averaged
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slowness are given by

ρ(x, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, −1.6 < x < −1.4;

1 + αR, −1.4 < x < −0.4 − 1/3;

1 + αR + 0.6αT , −0.4 − 1/3 < x < −0.4;

1 + αR + αT /0.6, −0.4 < x < −0.2;

αT /0.3, −0.2 < x < 0.2;

1 + αR + αT /0.6, 0.2 < x < 0.4;

1 + αR + 0.6αT , 0.4 < x < 0.4 + 1/3;

1 + αR, 0.4 + 1/3 < x < 1.4;

1, 1.4 < x < 1.6;

(5.9)

and

u(x, 1) =
1

ρ(x, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5, −1.6 < x < −1.4;

0.5 − αRΥ(x + 0.2), −1.4 < x < −0.4 − 1
3
;

0.5 − αRΥ(x + 0.2) − 0.36αT Υ(0.6x− 1.16), −0.4 − 1
3
< x < −0.6;

Υ(x + 0.6) − αRΥ(x + 0.2) − 0.36αT Υ(0.6x− 1.16), −0.6 < x < −0.4;

αT

0.36
Υ( x

0.6
+ 13

15
) − Υ(x− 1) + αRΥ(x + 1.8), −0.4 < x < −0.2;

αT

0.36
Υ( x

0.6
+ 13

15
) − αT

0.36
Υ( x

0.6
− 13

15
), −0.2 < x < 0.2;

− αT

0.36
Υ( x

0.6
− 13

15
) + Υ(x + 1) − αRΥ(x− 1.8), 0.2 < x < 0.4;

−Υ(x− 0.6) + αRΥ(x− 0.2) + 0.36αT Υ(0.6x + 1.16), 0.4 < x < 0.6;

−0.5 + αRΥ(x− 0.2) + 0.36αT Υ(0.6x + 1.16), 0.6 < x < 0.4 + 1
3
;

−0.5 + αRΥ(x− 0.2), 0.4 + 1
3
< x < 1.4;

−0.5, 1.4 < x < 1.6;

(5.10)

with Υ(x) = 0.5 − 0.4
(1.6)2x

2.

The time step is chosen as Δt = 1
2Δξ. We will give, respectively, the numerical

results computed by the first order Hamiltonian-preserving method and the second
order method using the van Leer slope limiter. The choice of β in the first and second
order methods are different. In the first order method, we use a linear relation between
β and the mesh size Δξ: β = Δξ. In the second order method, this choice does not
guarantee the numerical convergence, rather, β must decay to zero slower than Δξ.

Our numerical experiments indicate that β ∼ (Δξ)
1
2 will be appropriate.

Table 5.2 presents the l1-error of ρ and u computed with several different meshes
on the domain [−1.6, 1.6] × [−1.2, 1.2] by using the first order method. It can be
observed that the l1-convergence order of the numerical solutions is about 1/2 order.
Tables 5.3 and 5.4 present the same errors computed by the second order method
with two sets of β’s. Clearly, the second order methods give more accurate solutions
than the first order method. In comparison between the results by the second order
methods with different choices of β, one sees that a smaller β gives more accurate
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numerical solutions, but might cause mild oscillations, than a larger one. We do not
have a rigorous analysis on the relation between β and Δξ to provide the optimal
results by a second order method.

Table 5.2

l1 error of the numerical moments with different meshes β = Δξ, first order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 3.3051E-1 2.2438E-1 1.6185E-1 1.1425E-1

u 1.1481E-1 8.4303E-2 6.0016E-2 4.2667E-2

Table 5.3

l1 error of the numerical moments with different meshes β = 5Δξ, 7Δξ, 10Δξ, 14Δξ for the
four meshes, second order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 1.8969E-1 9.2800E-2 5.5672E-2 3.3926E-2

u 6.1719E-2 3.1710E-2 1.9006E-2 1.1536E-2

Figure 5.4 shows the numerical solutions of ρ and u using the 797 × 640 mesh
by the first order method along with the exact solutions. The numerical solution
captures the correct dynamics and discontinuities, but the resolution is poor even on
such a fine mesh. In contrast, Figure 5.5 shows the computed densities ρ using the
797×640 mesh by the second order method with different β’s. The results have much
higher resolution across the discontinuities than the first order method. However,
the numerical density by using β = 14Δξ exhibits some small oscillations near the
discontinuities between, while the use of a larger β = 42Δξ creates no oscillations at
the expense of a slight accuracy or resolution loss.

These results show that although the second order method can give more accurate
solutions than the first order method, there is a support size parameter β that needs
to be properly chosen in order to compromise between convergence and accuracy of
the numerical solution. It is not clear how to choose β a priori. In the future we will
study the feasibility of introducing the decomposition technique proposed in [25] into
such a problem with measure-valued data, which could avoid such an inconvenience
as well as improve the numerical accuracy and resolution.

Example 5.3. Computing the physical observables of a 2D problem with a L∞

solution. Consider the 2D Liouville equation (4.1) with a discontinuous wave speed

c(x, y) =

{
2 y > 0

1 y < 0

and a smooth initial data

f(x, y, ξ, η, 0) =
1

πc3c4
exp

(
−
(

x

c1

)2

−
(
y + 0.1

c2

)2

−
(

ξ

c3

)2

−
(
η − 0.1

c4

)2
)
,

where c1 = 0.03, c3 = 0.05, c2 = c4 = 0.025.
In this example we aim at computing the density which is the zeroth moment of

the density distribution

ρ(x, y, t) =

∫ ∫
f(x, y, ξ, η, t)dξdη.(5.11)
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Table 5.4

l1 error of the numerical moments with different meshes β = 15Δξ, 21Δξ, 30Δξ, 42Δξ for
the four meshes, second order method.

meshes 97 × 80 197 × 160 397× 320 797× 640

ρ 4.3791E-1 2.0464E-1 9.0273E-2 3.7545E-2

u 1.3585E-1 6.0953E-2 2.9188E-2 1.2857E-2
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Fig. 5.4. Example 5.2, density ρ and averaged slowness u at t = 1. Solid line: the exact solution;
“x”: numerical solutions by first order method using the 797 × 640 mesh. Left: ρ; Right: u.
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Fig. 5.5. Example 5.2, density ρ at t = 1. Solid line: the exact solution; “x”: numerical
solutions by second order method using the 797 × 640 mesh. Left: β = 14Δξ; Right: β = 42Δξ.

The computational domain is chosen to be [x, y, ξ, η] ∈ [−0.12, 0.12]× [−0.2, 0.2]×
[−0.2, 0.2] × [−0.2, 0.2].

The reflection and transmission coefficients αR, αT at the interface are given by
(2.4). The “exact” solution of ρ is obtained by first solving for f(x, y, ξ, η, t) ana-
lytically, and then evaluating the integral (5.11) on a very fine mesh in the (ξ, η)
space.

The time step is chosen as Δt = 1
3Δx. Figures 5.6 and 5.8 show, respectively,

the numerical density ρ at t = 0.12, 0.15 using different meshes along with the exact
solution. Figures 5.7 and 5.9 show, respectively, the numerical density ρ on x = 0 at
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Fig. 5.6. Example 5.3, density ρ at t = 0.12. Upper left: the exact solution; Upper right:

13 × 20 × 142 mesh; Lower left: 25 × 40 × 262 mesh; Lower right: 49 × 80 × 502 mesh.
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Fig. 5.7. Example 5.3, density ρ along x = 0 at t = 0.12. Solid line: exact solution; “o”:
13 × 20 × 142 mesh; “*”: 25 × 40 × 262 mesh; “ �”: 49 × 80 × 502 mesh.

t = 0.12, 0.15 using different meshes along with the exact solution.
Table 5.5 presents the l1 errors of ρ computed with different meshes in phase

space at t = 0.12, 0.15. The convergence rate is slightly higher than first order, which
does not suffer from the accuracy degeneration of an usual finite difference method
for solving the discontinuous solution of a linear hyperbolic equation—which is at
most 1/2 order stated by the well-established theory [30, 42]. This is because the
only discontinuity in the solutions is at the interface, which has been taken care of
by the Hamiltonian-preserving mechanism, and no linear discontinuity travels to the
downstream direction like in the 1D case.

Table 5.5

l1 error of ρ using different meshes.

meshes 13 × 20 × 142 25 × 40 × 262 49 × 80 × 502

t = 0.12 1.241556E-3 5.252852E-4 1.722251E-4

t = 0.15 1.244387E-3 6.621391E-4 2.617174E-4
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Fig. 5.8. Example 5.3, density ρ at t = 0.15. Upper left: exact solution; Upper right: 13× 20×

142 mesh; Lower left: 25 × 40 × 262 mesh; Lower right: 49 × 80 × 502 mesh.
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Fig. 5.9. Example 5.3, density ρ along x = 0 at t = 0.15. Solid line: exact solution; “o”:
13 × 20 × 142 mesh; “*”: 25 × 40 × 262 mesh; “ �”: 49 × 80 × 502 mesh.

6. Conclusion. In this paper, we extended our previous work [28] to the Liou-
ville equation of geometrical optics with partial transmissions and reflections. Such
problems arise in geometrical optics through inhomogeneous media. While still uti-
lizing the constant Hamiltonian structure in constructing the numerical flux, we also
account for the transmission and reflection coefficients in the numerical flux. By doing
so, the numerical flux automatically absorbs the interface condition. This gives an
explicit scheme for the time dependent Liouville equation with discontinuous indices
of refraction that can capture correctly the partial transmissions and reflections across
the interface. This scheme is subject to a hyperbolic CFL condition, under which the
scheme is positive, and stable in both l1 and l∞ norms. Numerical experiments are
carried out to study the numerical accuracy.

We only extended a finite difference version of the Hamiltonian-preserving scheme
developed in [28]. The finite volume version of the method in [28] can also be extended
in a similar fashion, but will not be given here.

In the future we will consider analytical issues such as the well-posedness of the
problem in a more general context than that discussed in this paper, and the con-
vergence of the numerical scheme. We will also investigate its applications to more
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complex interfaces, and develop more effective methods for the measure-valued initial
value problem for the same equation.
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ments and suggestions.
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