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Scales and Physical Laws 

•  Figure from E & Engquist, AMS Notice 



Connections between these physical laws 

•  Quantum mechanics  classical mechanics 
    Wigner transform and semi-classical limit 
    Planck constant 0 

•  Classical mechanics  Boltzmann Kinetic equations 
   BBGKY hierarchy, Grad-Boltzmann limit 
    N1, σ  0,  Nσ2 = constant 

•  Kinetic equations to hydrodynamics equations 
    Hilbert and Chapman-Enskog expansions 
    Knuden number (mean free path)  0 



Problems of multiple scales 
•  Physical laws at smaller scales contain laws at 

larger scales at some level of approximations; 
they are more accurate but more 
computationally expensive--very often 
prohibitively expensive 

•  Many physical problems contain scales of 
different orders of magnitude. A multiscale 
computational method is more efficient than a 
full small-scale simulation 

•  Understandings of the mathematical transitions 
from one scale to another are crucial for and 
guide the design of multiscale methods 



Outline of this tutorial 

•  The tutorial surveys some (recent) 
computational methods for 

        Multi-scale quantum-classical coupling 

        Multi-scale kinetic-hydrodynamic coupling    



I. Battling scales in Quantum mechanics 

•  Difficulties in a quantum simulation 
1)  N-body quantum system:  
    solve the Schrodinger equation in 3N-

dimension:  Born-Oppenheimer approximations, 
Hartree approximation, Hartree-Fock 
appriximation, density function theory, etc. 

2) Small scale: valid from Angstroms  
   (10-10 m)  to hundreds of nanometers  
        We will mainly focus on point 2) 



Electromagnetic spectrum 

     Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends from 
gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave 
lengths of one meter or greater.  

•  High frequency waves: wave length/domain of computation <<1  



Difficulty of high frequency wave 
computation 

•  Consider the example of visible lights in this 
lecture room: 

   wave length:  » 10-6 m 
   computation domain »  m 
     1d computation:  106  » 107 

     2d computation:  1012 » 1014   

     3d computation: 1018  » 1021 
     do not forget time!  Time steps:  106  » 107 



Linear Schrodinger Equation 



Free Schrodinger equation (V=0) 

   If ψ(x,0)=exp (ik¢ x/ε),  x2 Rd 
   Then ψ(x, t)=exp [i( k ¢ x/ε- |k|2t/(2ε)] 
    solution is oscillatory in both space and 

time: wave length O(ε) 

  No explicit solution for V ≠  0 



Semiclassical limit of the linear schrodinger 
equation 

  If one can find the asymptotic (semiclassical) limit as  
ε ◊ 0 then one can just solve the  limiting equation 
numerically (no more ε !) 



The WKB Method 

 We assume that solution has the form  (Madelung Transform) 

 and apply this ansatz into the Schrodinger equation with initial data.  
  Separating the real part from the imaginary part, and keeping only the leading 

order term, one  
 can get 



Pressureless gas equations 



Linear superposition vs viscosity solution 

This limit can be justified for smooth solutions (Grenier 98). 
Beyond the singularity (caustics) of the eiconal equation this 
system is no longer the correct weak solution of the  
Semi-classical limit of the Schrodinger equations, even for 
linear problem.  

For example, in the linear case, the Schrodinger equation 
satisfies the superposition principle, while the viscosity 
solution, in the sense of Crandall and Lions, for the eiconal 
equation beyond the caustics, is  not linearly 

superimposable. 



Linear superposition vs viscosity solution 



Shock vs. multivalued solution 



Semi-classical limit in the phase space 

Wigner Transform  

  W(x,k)=1/(2π)d s  e-i k ¢ y  ψ(x+εy/2)ψ*(x-εy/2) dy 
                          Rd 

  where ψ* is the complex conjugate of ψ. 

  A convenient tool to study the semiclassical limit  
   Lions-Paul;  
   Gerard, Markowich, Mauser, Poupaud; 
   Papanicolaou-Ryzhik-Keller 



Moments of the Wigner function 

The connection between Wε and ψ is 
established through the moments 



The Wigner equation 

•  Wε satisfies the Wigner equation 
       Wε

t + k ¢ rx Wε - Θε[V] Wε=0 
Where  
 Θε[V] Wε  = ε-1 /(2π)d ¢ 
           sRd eik ¢ y ψ(x-εy/2)[V(x+ε y/2)-V(x-ε y/2)] dy 



The semi-classical limit 



Semiclassical limit beyond caustics 

In the  linear case, the Liouville equation still 
holds beyond the caustics; it unfolds the caustics in the phase space 

Some phase information is missing:  Keller-Maslov index 



The semiclassical limit for the moments 



Difficulties for computing the semi-classical limit 

•  In the physical space solution becomes multi-
valued 

•  In phase space, solution in defined in higher 
dimension, and is singular (measure-valued) 

  moment methods and level set methods have 
been developed to deal with these difficulties 



Kinetic moment closure 
 Since the Liouville equation is a  kinetic equation defined in the 
 phase space (six dimensional !), it is too expensive to solve 
 numerically.   We hope to bring it down to the physical space. This 
 usually requires special density distribution (Grad, Levermore,  
 extended thermodynamics). 

 We are interested in computing the  multivalued or multiphased 
 solutions.  If the total number of phases is  finite, we can find 
 a limiting distribution for Wε that can be used to close the Liouville 
 equations exactly 



Multiphase ansatz  



Multiphase ansatz in the semiclassical limit 



Moment equations in 1D (with X. Li) 



Moment closure in 1D 



A weakly hyperbolic system 

•  FN can be defined and consequently the  
multiphase equations  are equivalent to the 
N pressureless gas equations  satisfied by 

each (ρk, uk)  
•  The moment systems are 
     ---weakly hyperbolic— 
  the Jacobian is similar to Jordan blocks.  



Two phase equations in 1D 



Modified flux 



Higher moment equations 

  Similar moment equations can be obtained for larger N (algebraically 
  the flux becomes increasingly more complicated with larger N and one 
 needs to use numerical procedure to generate the flux FN for N>5. 

  FN  is always a rational function of m_0, , M2N-1, and the zero 
  denominator condition can be used to determine the correct 
  number of phases as was done for N=2. Similar modified flux may also 
  be introduced. 

  We have also found  moment equations for 2-D. 

  One can estimate the total number of phases in 1-D (number of intitial  
  inflection points).  

  For multi-D  physical intuition is needed for such an estimate. 

 For wave equations moment methods were used by Brenier-Corias, (’84, 98), 
 Engquist-Runborg ’96, Gosse ‘03 



Kinetic schemes for moment equations 

  Since the moment system is only  weakly hyperbolic, and 
  the flux function cannot be expressed analytically when N 

is 
  large, the Godunov type scheme is out of the question.   

  On the other hand, since the moment system  
  arises as a moment closure of the kinetic Liouville 

equation,  
  thus a kinetic scheme is the most natural choice for the 
  moment systems. 



Burgers’ equation 



A level set method 

•  joint work with  S. Osher (Comm Math Sci 
’03) 

•  also see Cheng-Liu-Osher (Comm Math Sci 
’03) 

•   Liouville-based level set for multivalued  
fronts:  Engquist-Runborg-Tornberg, Fomel-Sethian, 
Osher-Cheng-Kang-Shim-Tsai 



Quasilinear hyperbolic equations 



The level set equation 



Multivalued solution to the Burgers equation  



Riemann problem for Burgers’ equation  



Burger’s equation with harmonic osccilator forcing 



Riemann problem for 2d Burgers 

•   uut+uux+uuy=0 



Multidimensional Hamilton-Jacobi equations  



Level set equation for H-J 



Initial condition 



2d Hamilton-Jacobi 



Density and other physical observables 



Phase space computation of physical observables 

•  Jin, H.L. Liu, S. Osher and R. Tsai, J Comp Phys ’05 



Recovering the physical observables (moments)  



Evolving delta function or not 



Five branch solution (velocity and density) 



Another example 



2d computation (density) 



Phase shift 

•  We are also able to include the Keller-
Maslov index into the level set formulation 
in order to take into account the phase 
shift at caustics 

   Jin and X. Yang (JSC 08) 



Other topics/issues 

Diffractions 
  —can combine with Geometric 

Theory of diffractions (J. Keller) 

   Runborg-Matemed; Jin-Yin 



Other topics/issues 

Gaussian beam methods —accurate even at 
caustics 

Where A and M are complex (Haller,Popov, 
Ralston, …) 

Level set/complex Liouville equations can also be 
used 

(Leung-Raslton-Qian-Burridge, Jin-Wu-Yang)  


