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Classical mechanics 

•  Hamiltonian equations 
     dx/dt =p= rx H 
     dp/dt=-r V = -rp H 
         Hamiltonian  H = ½ |p|2+V  
•  Liouville equation for probability density 

distribution f(t,x,p): 
         ∂t f + p¢ rx f-rx V¢ rp f = 0 



Quantum mechanics 



Semiclassical limit 



A quantum-classical coupling model (Jin-Novak) 



Interface condition (one dimensional)  



Liouville equation with singular coefficients 

  This interface condition  allows us to solve Liouville 
equations with singular coefficients. 

            ft + Hp fp – Hx fp = 0 

•  Weak solution not well-defined 
•  DiPerna-Lions renormalized solution for linear transport 

with discontinuous (BV) coefficients does not apply 



Solution to Hamiltonian System with discontinuous 
Hamiltonians 

•  This way of defining solutions also gives a definition to the solution of the underlying 
Hamiltonian system across the interface:   

           dx/dt= Hp,    dp/dt=-Hx                              

                                              R 
                                                                    T 

•  Particles cross over or be reflected by the corresponding transmission or reflection 
coefficients (probability) 

•  Based on this definition we have also developed particle methods (both deterministic 
and Monte Carlo) methods 



Implementation (one dimensional) 



Transfer matrix method 



Scattering coefficients 



Liouville solver 



Interface condition built into the numerical flux 



A step potential ( V(x)=1/2 H(x) ) 



Resonant tunnelling 



2D interface condition 



Implementation 



Scattering probabilities 



Scattering probabilities 



Quantum transmitting boundary method 



Quantum transmitting boundary method 



Quantum transmitting boundary method 



Quantum transmitting boundary method 



Particle method 



Circular barrier (Schrodinger with ε=1/400) 



Circular barrier (semiclassical model) 



Circular barrier (classical model) 



Diffraction grating:  



Semiclassical  



Semiclasical vs Schrodinger (ε=1/800) 



Entropy 

•  The semiclassical model is time-
irreversible.   
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      Loss of the phase information 
      cannot deal with interference   



decoherence 

  V(x)  = δ(x) + x2/2 

   Quantum 

   semiclassical 



A Coherent Semiclassical Model 
Initialization:  
•  Divide barrier into several thin barriers  
•  Solve stationary Schrödinger equation 

•   Matching conditions 



A coherent model 
•  Initial conditions 

•  Solve Liouville equation 

•  Interface condition 

•  Solution 



Interference 



The coherent model 

•  V(x)  = δ(x) + x2/2 

   Quantum 

   semiclassical 



multiple delta barrier (Kronig-Penney) 
decoherent model vs Schrodinger  



multiple delta barrier (Kronig-Penney) 
coherent model vs Schrodinger 



multiple delta barrier (Kronig-Penney) 
average soln of coherent model vs Schrodinger 



Conclusions 
•  semiclassical de-coherent and a coherent model 

for  quantum barriers; Computational cost is at 
the level of classical mechanics (does not 
numerically resolve the small De Broglie length) 

•  Compute correctly partial transmission, partial 
reflection, and phase information at the quantum 
barriers 

•  theoretical justification (Miller, Bal-Keller-
Papanicolaou-Ryzhik) ; More general (wide) 
barriers 

•  How to deal with (nonlinear) mean field models: 
Hartree, Hartree-Fock, Density function theory 


