II. Quantum-classical coupling

Classical mechanics

- Hamiltonian equations $dx/dt = p = \nabla_x H$ $dp/dt = -\nabla V = -\nabla_p H$ Hamiltonian $H = \frac{1}{2} |p|^2 + V$
- Liouville equation for probability density distribution f(t,x,p):

 $\partial_t \mathbf{f} + \mathbf{p} \notin \nabla_x \mathbf{f} - \nabla_x \mathbf{V} \notin \nabla_p \mathbf{f} = \mathbf{0}$

Quantum mechanics

Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi=\hat{H}\psi=\Big(-\tfrac{1}{2}\hbar^2\Delta+V(x)\Big)\psi$$

Density matrix

$$\hat{\rho}(x,x',t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \tilde{f}(\tilde{x},\tilde{p})\psi(x,t;\tilde{x},\tilde{p})\overline{\psi}(x',t;\tilde{x},\tilde{p}) d\tilde{x} d\tilde{p}$$

Von Neumann equation

$$i\hbar\frac{\partial}{\partial t}\hat{\rho}(x,x',t) = \left(-\frac{1}{2}\hbar^2[\Delta_x - \Delta_{x'}] + V(x) - V(x')\right)\hat{\rho}(x,x',t)$$

Semiclassical limit

If V(x) is sufficiently smooth, [Lions and Paul '93; Gérard, Markowich, Mauser and Poupaud '97] $\Theta^{\varepsilon}W \rightarrow \nabla_x V \cdot \nabla_p W$ as $\varepsilon \rightarrow 0$ Wigner equation $(\varepsilon \rightarrow 0)$ $\frac{\partial}{\partial t}W + p \cdot \nabla_x W - \nabla_x V \cdot \nabla_p W = 0$ Classical Liouville equation $\frac{\partial}{\partial t}f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = 0$

A quantum-classical coupling model (Jin-Novak)

- Classical—quantum coupling [Ben Abdallah, Degond, Gamba '02]
- Hamiltonian-preserving scheme [Jin and Wen '05]

ldea

- Solve the Liouville equation locally.
- Use the weak form of the conservation of energy (H = constant) to connect the local solutions together.
- Use a physically relevant interface condition to choose correct solution.

Assumptions

- Barrier width O(ε).
- Distance between neighboring barriers is O(1).
- ∇V(x) is O(1) except at barrier.
- Barriers are mutually independent.

Interface condition (one dimensional)

Liouville equation with singular coefficients

This interface condition allows us to solve Liouville equations with singular coefficients.

 $f_t + H_p f_p - H_x f_p = 0$

- Weak solution not well-defined
- DiPerna-Lions renormalized solution for linear transport with discontinuous (BV) coefficients does not apply

Solution to Hamiltonian System with discontinuous Hamiltonians

• This way of defining solutions also gives a definition to the solution of the underlying Hamiltonian system across the interface:

 $dx/dt = H_p$, $dp/dt = -H_x$

- Particles cross over or be reflected by the corresponding transmission or reflection coefficients (probability)
- Based on this definition we have also developed particle methods (both deterministic and Monte Carlo) methods

Implementation (one dimensional)

Initialization

- ♦ Solve time-independent Schrödinger equation for E = ¹/₂p² (using transfer matrix method)
- ♦ Calculate T(p) and R(p) to get interface condition
- Liouville Solver
 - Use finite volume method globally
 - Incorporate interface condition at quantum barrier

Transfer matrix method

Scattering coefficients

Transmission and reflection coefficients $T = \frac{\text{transmitted current density}}{\text{incident current density}} \quad R = \frac{\text{reflected current density}}{\text{incident current density}}$ Continuity equation $\frac{\partial}{\partial t}\rho_{-}+\nabla\cdot J=0 \quad \text{where} \quad J(x)=\varepsilon\text{Im}\left(\overline{\psi}\nabla\psi\right)$ Wave incident from the left $(a_1 = 1, b_1 = r_1, a_2 = t_1 \text{ and } b_2 = 0)$ $\begin{array}{c} \stackrel{1}{\longrightarrow} \quad \\ \stackrel{r_1}{\longleftarrow} \quad \\ O \quad \quad \\ \hline \mathcal{C}_2 \quad \\ \end{array} \qquad \qquad J(x) = \begin{cases} \kappa_1 \left(1 - |r_1|^2 \right), & x \in \mathcal{C}_1 \\ \kappa_2 \left(|t_2|^2 \right), & x \in \mathcal{C}_2 \end{cases}$ $R = |r_1|^2$ and $T = \sqrt{\frac{p^2 - 2V_2}{p^2 - 2V_1}} |t_1|^2$

Liouville solver

Liouville Equation

$$\frac{\partial f}{\partial t} = -p \frac{\partial f}{\partial x} + \frac{dV}{dx} \frac{\partial f}{\partial x}$$

Finite volume discretization of Liouville equation

$$\frac{f_{ij}^{n+1} - f_{ij}^n}{\Delta t} = -p_j \partial_x f_{ij}^n + \partial_x V_i \partial_p f_{ij}^n$$

where the cell average

$$f_{ij}^n = \frac{1}{\Delta x \Delta p} \iint_{C_{ij}} f(x, p, t_n) \, dx \, dp$$

Interface condition built into the numerical flux

Pull interface condition

$$\begin{split} f^+_{Z+1/2,j} &= R(q_j) f^+_{Z+1/2,-j} + T(q_j) f(x^-_{Z+1/2},q_j) & \text{ for } j > 0 \\ f^-_{Z+1/2,j} &= R(q_j) f^-_{Z+1/2,-j} + T(q_j) f(x^+_{Z+1/2},q_j) & \text{ for } j < 0 \end{split}$$

where the incident $q_j = p_j \sqrt{1 + 2(V_{Z+1/2}^+ - V_{Z+1/2}^-)/p_j |p_j|}$.

We define $f(x_{Z+1/2}^-, q_j)$ as the cell average

$$f(x_{Z+1/2}^{-}, q_j) = \frac{1}{p_j \Delta p} \int_{q_{j-1/2}}^{q_{j+1/2}} pf(x_{Z+1/2}^{-}, p) \, dp$$

where $q_{j\pm 1/2} = \sqrt{p_{j\pm 1/2}^2 + 2(V_{Z+1/2}^+ - V_{Z+1/2}^-)}$. The integral is approximated by a composite mid-point rule.

A step potential (V(x)=1/2 H(x))

FIG. 5.1. Position densities for the semiclassical Liouville (top) and Schrödinger (bottom) solutions of Example 5.1. The Schrödinger solution shows $\varepsilon = (a) 200^{-1}$, (b) 800^{-1} , (c) 3200^{-1} and (d) 12800^{-1} . The position density of Liouville solution exhibits a caustic near x = 0.08 and the peak is unbounded. For the Schrödinger solution the peak reaches a height of 19 for the $\varepsilon = 12800^{-1}$. The plots are truncated for clarity.

Resonant tunnelling

FIG. 5.4. Detail of Fig. 5.3 showing position densities for the numerical semiclassical Liouville and von Neumann solutions. The \bullet shows the numerical solution for with 150 grid points over the domain [-1.25, 1.25]. The solid line shows the "exact" Liouville solution and the von Neumann solution using $\varepsilon = 0.002$.

FIG. 5.3. Position densities for the numerical semiclassical Liouville (top) and von Neumann (bottom) solutions of Example 5.3. The • in the Liouville plot shows the numerical solution for with 150 grid points over the domain [-1.25, 1.25]. The solid line shows the numerical solution for 3200 grid points. The von Neumann solution is for $\varepsilon = 0.002$.

2D interface condition

Pull interface condition

$$\begin{split} f(\mathbf{x}_{\mathsf{out}}, p_{\mathsf{out}}, \theta_{\mathsf{out}}) = & \int_{-\pi/2}^{\pi/2} R(\theta_{\mathsf{in}}; p_{\mathsf{in}}, \theta_{\mathsf{out}}) f(\mathbf{x}_{\mathsf{in}}, p_{\mathsf{in}}, \theta_{\mathsf{in}}) \, d\theta_{\mathsf{in}} \\ & + \int_{-\pi/2}^{\pi/2} T(\theta_{\mathsf{in}}; q_{\mathsf{in}}, \theta_{\mathsf{out}}) f(\mathbf{x}_{\mathsf{in}}, q_{\mathsf{in}}, \theta_{\mathsf{in}}) \, d\theta_{\mathsf{in}} \end{split}$$

Push interface condition

Implementation

Initialization

- Solving time-independent Schrödinger equation for each $E = \frac{1}{2}p^2$ and θ_{in} .
- Calculate $T(\theta_{out}; p, \theta_{in})$ and $R(\theta_{out}; p, \theta_{in})$.
- Liouville Solver:
 - Particle method
 - Push interface condition

Scattering probabilities

Scattering probabilities

For particle incident from left at angle θ_{in} : $\psi_1(x,y) = e^{ip_1(x\cos\theta_{in}+y\sin\theta_{in})} + \int_{-\pi/2}^{\pi/2} r(\theta)e^{-ip_1(x\cos\theta+y\sin\theta)} d\theta$ $\psi_2(x,y) = \int_{-\pi/2}^{\pi/2} t(\theta)e^{ip_2(x\cos\theta+y\sin\theta)} d\theta$ $R(\theta; p_1, \theta_{in}) = |r(\theta)|^2 \frac{\cos\theta}{\cos\theta_{in}} \quad \text{and} \quad T(\theta; p_1, \theta_{in}) = |t(\theta)|^2 \frac{p_2\cos\theta}{p_1\cos\theta_{in}}$ $! \text{ Find } r(\theta) \text{ and } t(\theta) \text{ by solving Schrödinger equation in } Q.$

$$\begin{array}{c|c} \mathcal{C}_1 & \mathcal{Q} & \mathcal{C}_2 \\ \hline x_1 & x_2 \end{array}$$
Fourier transform of ψ into momentum space $(y \mapsto \xi)$

$$\frac{\partial^2}{\partial x^2} \hat{\psi}_{\mathcal{Q}}(x,\xi) + \eta_1^2(\xi) \hat{\psi}_{\mathcal{Q}}(x,\xi) - 2 \int_{-\infty}^{\infty} V_{\mathcal{Q}}(x,y) \psi(x,y) e^{-i\xi y} \, dy = 0$$
in \mathcal{Q} with matching conditions

$$\hat{\psi}_{\mathcal{Q}}(x_j,\xi) = \hat{\psi}_j(x_j,\xi)$$

$$\frac{\partial}{\partial x} \hat{\psi}_{\mathcal{Q}}(x_j,\xi) = \frac{\partial}{\partial x} \hat{\psi}_j(x_j,\xi), \quad j = 1,2$$
where $\eta_1^2(\xi) = p^2 - \xi^2$

Particle method

Circular barrier (Schrodinger with $\varepsilon = 1/400$)

Circular barrier (semiclassical model)

Circular barrier (classical model)

Diffraction grating:

$$V(x,y) = \begin{cases} 2\cos^2(\pi x/2\varepsilon)\cos^2(y/4\varepsilon), & x \in (-\varepsilon,\varepsilon) \\ 0, & \text{otherwise} \end{cases}$$

Semiclassical

Semiclasical vs Schrodinger (ϵ =1/800)

Entropy

• The semiclassical model is timeirreversible.

Loss of the phase information cannot deal with interference

decoherence

A Coherent Semiclassical Model

Initialization:

• Divide barrier into several thin barriers

Solve stationary Schrödinger equation

$$B_1, B_2, \ldots, B_n$$

$$\begin{array}{c} \leftarrow \psi_{1}^{+} & \psi_{2}^{+} \rightarrow \\ \psi_{1}^{-} & \leftarrow \psi_{2}^{-} \\ \hline B_{j} \end{array}$$

• Matching conditions

$$\begin{pmatrix} \psi_1^+ \\ \psi_2^+ \end{pmatrix} = \begin{pmatrix} r_1 & t_2 \\ t_1 & r_2 \end{pmatrix} \begin{pmatrix} \psi_1^- \\ \psi_2^- \end{pmatrix} = S_j \begin{pmatrix} \psi_1^- \\ \psi_2^- \end{pmatrix}$$

A coherent model

- Initial conditions $\Phi(x, p, 0) = \sqrt{f(x, p, 0)}$
- Solve Liouville equation

$$\frac{d\Phi}{dt} = \frac{\partial\Phi}{dt} + p\frac{\partial\Phi}{dx} - \frac{dV}{dx}\frac{\partial\Phi}{dp} = 0$$

Interface condition

$$\begin{pmatrix} \Phi^+ \\ {}_{j-1} \\ \Phi^+ \\ j \end{pmatrix} = S_j \begin{pmatrix} \Phi^- \\ {}_{j-1} \\ \Phi^- \\ j \end{pmatrix}$$

• Solution $f(x, p, t) = |\Phi(x, p, t)|^2$

Interference

Define the semiclassical probability amplitude as

$$\Phi(x, p, t) = \sqrt{f(x, p, t)}e^{i\theta(x, p)}$$

where $\theta(x,p)$ is the phase offset from the initial conditions $\Phi(x,p,0) = \sqrt{f(x,p,0)}$.

Hence, if $\Phi(x, p, t)$ is a solution to the Liouville equation for initial condition $\Phi(x, p, 0)$, then $f_{\rm coh}(x, p, t)$ is a solution to the Liouville equation for initial condition $f_{\rm coh}(x, p, 0)$. Furthermore, for two solutions Φ_1 and Φ_2 with $f_1 = |\Phi_1|^2$ and $f_2 = |\Phi_2|^2$,

$$|\Phi_1 + \Phi_2|^2 = f_1 + f_2 + 2\sqrt{f_1 f_2} \cos(\theta_1 - \theta_2).$$
(10)

For any two probability densities ψ_1 and ψ_2 with with $\rho_1 = \int f_1 dp = |\psi_1|^2$ and $\rho_2 = \int f_2 dp = |\psi_2|^2$,

$$|\psi_1 + \psi_2|^2 = \rho_1 + \rho_2 + 2\sqrt{\rho_1 \rho_2} \cos(\theta_1 - \theta_2).$$
(11)

The coherent model

multiple delta barrier (Kronig-Penney) decoherent model vs Schrodinger

multiple delta barrier (Kronig-Penney) coherent model vs Schrodinger

multiple delta barrier (Kronig-Penney) average soln of coherent model vs Schrodinger

Conclusions

- semiclassical de-coherent and a coherent model for quantum barriers; Computational cost is at the level of classical mechanics (does not numerically resolve the small De Broglie length)
- Compute correctly partial transmission, partial reflection, and phase information at the quantum barriers
- theoretical justification (*Miller, Bal-Keller-Papanicolaou-Ryzhik*); More general (wide) barriers
- How to deal with (nonlinear) mean field models: Hartree, Hartree-Fock, Density function theory