Traveling-wave solutions to reaction-convection equations with Perona-Malik diffusion

Andrea CORLI *, Luisa MALAGUTI †, Elisa SOVRANO *

The Perona-Malik equation is a nonlinear forward-backward parabolic equation introduced for noise reduction and edge detection of digitalized images. In one space dimension, this equation reduces to

$$(1) u_t = \left[G(u_x) \right]_r,$$

for $t \geq 0$, $x \in \mathbb{R}$, so that $G'(u_x)$ plays the role of the diffusion coefficient. The function G is bounded with $G(\pm \infty) = 0$, and non-monotone, with G' > 0 in an interval $(-\kappa, \kappa)$ and G' < 0 elsewhere, see Figure 1. Thus, the diffusion is weak and negative when u_x is large and strong and positive when u_x is small.

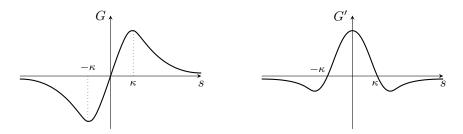


Figure 1: Plots of a typical function G (left) and its derivative G' (right).

A convection term can be added to (1) to obtain the more general equation

(2)
$$u_t + [H(u)]_x = [G(u_x)]_x.$$

In image inpainting, the convective term in equation (2) is a rough simplification motivated by more complex models [2], see also [4]. Significant efforts have been devoted to investigate traveling wave solutions for equations of the form (2), see [4, 5, 7]. We recall that a traveling wave u to (2) is a solution of the form $u(x,t) = \varphi(x-ct)$, for some $c \in \mathbb{R}$; here, we consider the case φ is smooth, global and monotone, i.e., we deal with *wavefronts*. Wavefronts for (2) are proved to exist only if the profiles φ satisfy $|\varphi'(\xi)| \le \kappa$ for every $\xi \in \mathbb{R}$ (namely, they are *subcritical* if the inequality is strict, and *critical* otherwise). As a consequence, for these solutions the diffusion coefficient is always greater or equal to 0.

Here, we deal with the following equation, where also a reaction term is included:

(3)
$$u_t + [H(u)]_x = [G(u_x)]_x + f(u),$$

where $f \in C[0, 1]$ satisfies f(0) = f(1) = 0 and f > 0 in (0, 1).

From the image processing viewpoint, the introduction of f results in an image contrast-enhancing, see [1]. In general one may assume that f has a finite number of zeros in (0,1) to extract different quantized gray-levels.

Our main results [3] are the following:

^{*}Dipartimento di Matematica e Informatica, University of Ferrara, Italy. Email: andrea.corli@unife.it

[†]Dipartimento di Scienze e Metodi dell'Ingegneria, University of Modena and Reggio Emilia, Italy. Email: luisa.malaguti@unimore.it

Dipartimento di Scienze e Metodi dell'Ingegneria, University of Modena and Reggio Emilia, Italy. Email: elisa.sovrano@unimore.it

- There is a threshold speed $c_0 \in \mathbb{R}$ such that, if $c \geq c_0$, then equation (3) has a unique (up to horizontal shifts) wavefront $u \in C^1(\mathbb{R}^2)$ with wave speed c and monotone profile φ satisfying $\varphi(-\infty) = 1$ and $\varphi(+\infty) = 0$. These profiles φ are either subcritical or critical.
- The same result also holds in the case case $c < c_0$ if for the speed c_0 there exists a subcritical profile.
- We study the strict monotonicity of the profiles with respect to the ξ variable as well as with respect to the parameter c, their smoothness, and the lack of sharp (non-smooth) behavior at the equilibria.

The proof mixes comparison techniques with other tools of nonlinear analysis, such as, for instance, Schauder fixed-point theorem. Analogous results hold in the case $\varphi(-\infty) = 0$, $\varphi(+\infty) = 1$.

By formal computations, supercritical wavefronts for (2) are expected to exist; this guess has been verified with numerical simulations, but wavefronts are no more continuous in this case, see [4, 6].

References

- [1] L. Alvarez, J. Esclarín. Image quantization using reaction-diffusion equations, SIAM J. Appl. Math. 57 (1) (1997) 153–175.
- [2] M. Bertalmio, A. L. Bertozzi, G. Sapiro. Navier-Stokes, fluid dynamics and image and video inpainting, in: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2001, pp. 355–362.
- [3] A. Corli, L. Malaguti and E. Sovrano. Wavefront solutions to reaction-convection equations with Perona-Malik diffusion, *J. Differential Equ.*, 308: 474–506, 2022.
- [4] J. Goodman, A. Kurganov, P. Rosenau. Breakdown in Burgers-type equations with saturating dissipation fluxes, Nonlinearity 12 (2) (1999) 247–268.
- [5] J. B. Greer, A. L. Bertozzi. Traveling wave solutions of fourth order PDEs for image processing, SIAM J. Math. Anal. 36 (1) (2004) 38-68.
- [6] A. Kurganov, D. Levy, P. Rosenau, On Burgers-type equations with nonmonotonic dissipative fluxes, Comm. Pure Appl. Math. 51 (5) (1998) 443-473.
- [7] T. Li, J. Park. Stability of traveling wave solutions of nonlinear conservation laws for image processing, Commun. Math. Sci. 15 (4) (2017) 1073–1106.