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Experiments with Entropy Conservative Flux Functions
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Developing suitable numerical diffusion appropriate to entropy conservation is currently the focus of research in algorithm
development, after decades of sophisticated developments made in shock capturing. Tadmor [1]] introduced an appropriate
mathematical framework for this purpose, followed by different variations by Roe [2]] and a few others. All these schemes have
a heavy dependence on the eigen-structure of the hyperbolic system. We report further experiments with alternative entropy
conservative flux functions, coupled with exact shock capturing in a simple central discretization framework.

We start with the condition introduced by Tadmor an entropy conservative flux F°.
(1 AV - F°= Ay

where V is the entropy variable vector and 1) is entropy flux function. A family of entropy conservative fluxes can be constructed
by simply writing % as a function of entropy variables in the above condition. Then we obtain

AV Fo = Ap(V) . (V) = va(—vs) 7 exp (7_—71 ot - 2)

There are multiple ways in which A can be split and they are used to compute different entropy conservative fluxes. One
variation for the entropy conservative flux (EC1) is given by the following expressions.
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Here M 4 is the arithmetic mean, M, is generalized log mean and Mg x is exponential mean. Numerically stable approxima-
tions of M, and Mg x are used. The above flux preserves steady contact discontinuities exactly, a property not shared by other
variations.

For capturing discontinuities, the framework of simple and robust central schemes given by Kolluru ez al.[3] is used. One of them
is the scalar diffusion based on generalized Riemann invariants. This scheme can capture steady contact discontuities exactly.
An entropy stable scheme is then obtained by

1
F=F+F& Fi= —5 AU
Where a; = max(|url, lug|) and F* is entropy conservative flux given by (2). Above diffusion is based on the semi-discrete

entropy conservation law and thus adds diffusion consistently. Another additional diffusion at shocks is taken based on Rankine-
Hugoniot jump condition, as in [3]. The entropy stable flux then is given by

. 1
® F=F 4Ry Ffy=—sA0
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A switch based on the gradient of entropy is used to detect shocks and MOVERS+ type diffusion is used only at shocks. Final
flux is given by

1 if shock present
) F=F+(1-)Ff+6Fy, ¢= P
0 otherwise
Numerical experiments are performed on a typical benchmark one dimensional test cases, as shown in figure 1-8. The scheme
captures both shocks and contact discontinuities with low diffusion and captures steady contact discontinuities exactly. Strong
shocks are captured without any oscillations or anomalies.
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Figure 1: Sod’s shock tube test case Figure 2: Double rarefraction test case Figure 3: Strong shock tube test case
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Figure 4: Two shocks separated by a
contact discontinuity Figure 5: Steady shock test case Figure 6: Steady contact discontinuity
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Figure 7: Slowly moving shock captured without oscillations Figure 8: Slowly moving contact test case

References

[1] E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. Mathematics of Computation, 49 : 91-103 , 1987.

[2] PL. Roe. Affordable, entropy-consistent Euler flux functions I. In Eleventh International Conference on Hyperbolic Problems: Theory, Numerics,
Applications, Lyon, 2006.

[3] R. Kolluru, N.V. Raghavendra, S.V. Raghurama Rao and G.N. Sekhar, Simple and robust contact-discontinuity capturing schemes for high speed com-
pressible flows. Applied Mathematics and Computation, 414 , 2021.



