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Experiments with Entropy Conservative Flux Functions

K. Bahuguna ∗, R. Kolluru †, S. V. Raghurama Rao ‡

Developing suitable numerical diffusion appropriate to entropy conservation is currently the focus of research in algorithm
development, after decades of sophisticated developments made in shock capturing. Tadmor [1] introduced an appropriate
mathematical framework for this purpose, followed by different variations by Roe [2] and a few others. All these schemes have
a heavy dependence on the eigen-structure of the hyperbolic system. We report further experiments with alternative entropy
conservative flux functions, coupled with exact shock capturing in a simple central discretization framework.

We start with the condition introduced by Tadmor an entropy conservative flux F c.

(1) ∆V · F c = ∆ψ

where V is the entropy variable vector and ψ is entropy flux function. A family of entropy conservative fluxes can be constructed
by simply writing ψ as a function of entropy variables in the above condition. Then we obtain

∆V · F c = ∆ψ(V ) , ψ(V ) = v2(−v3)
−γ
γ−1 exp

(
−γ
γ − 1

+ v21 −
v22
2v3

)

There are multiple ways in which ∆ψ can be split and they are used to compute different entropy conservative fluxes. One
variation for the entropy conservative flux (EC1) is given by the following expressions.
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Here MA is the arithmetic mean, MGL is generalized log mean and MEX is exponential mean. Numerically stable approxima-
tions of MGL and MEX are used. The above flux preserves steady contact discontinuities exactly, a property not shared by other
variations.

For capturing discontinuities, the framework of simple and robust central schemes given by Kolluru et al.[3] is used. One of them
is the scalar diffusion based on generalized Riemann invariants. This scheme can capture steady contact discontuities exactly.
An entropy stable scheme is then obtained by

F = F c + F d
R, F d

R = −1

2
αI∆U

Where αI = max(|uL|, |uR|) and F c is entropy conservative flux given by (2). Above diffusion is based on the semi-discrete
entropy conservation law and thus adds diffusion consistently. Another additional diffusion at shocks is taken based on Rankine-
Hugoniot jump condition, as in [3]. The entropy stable flux then is given by

(3) F = F c + F d
M , F d

M = −1

2
|sj+1/2|∆U
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A switch based on the gradient of entropy is used to detect shocks and MOVERS+ type diffusion is used only at shocks. Final
flux is given by

(4) F = F c + (1− φ)F d
R + φF d

M , φ =

{
1 if shock present
0 otherwise

Numerical experiments are performed on a typical benchmark one dimensional test cases, as shown in figure 1-8. The scheme
captures both shocks and contact discontinuities with low diffusion and captures steady contact discontinuities exactly. Strong
shocks are captured without any oscillations or anomalies.
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Figure 1: Sod’s shock tube test case
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Figure 2: Double rarefraction test case
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Figure 3: Strong shock tube test case
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Figure 4: Two shocks separated by a
contact discontinuity
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Figure 5: Steady shock test case
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Figure 6: Steady contact discontinuity
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Figure 7: Slowly moving shock captured without oscillations
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Figure 8: Slowly moving contact test case

References
[1] E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. Mathematics of Computation, 49 : 91-103 , 1987.

[2] P.L. Roe. Affordable, entropy-consistent Euler flux functions I. In Eleventh International Conference on Hyperbolic Problems: Theory, Numerics,
Applications, Lyon, 2006.

[3] R. Kolluru, N.V. Raghavendra, S.V. Raghurama Rao and G.N. Sekhar, Simple and robust contact-discontinuity capturing schemes for high speed com-
pressible flows. Applied Mathematics and Computation, 414 , 2021.

2


