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In this work we consider linear first order hyperbolic systems of the form

(1) ∂tU +
∑
k

Ak∂kU = 0,

on Rd and investigate first order finite volume approximations of (1) for general initial data U(x, 0) ∈ L2(Rd) on general meshes.

Proofs of convergence of finite volume methods for hyperbolic systems on unstructured meshes generally assume some smooth-
ness of the solution (at least H1 with compact support in [5], H2 in [1], Hs with s ∈]0, 1] in [3]), and are restricted to the
classical “upwind scheme” ([5, 1, 3]).
However for general possibly discontinuous initial data U(x, 0) ∈ L2(Rd) and non smooth solutions, one usually relies on com-
pactness methods. Unlike [2] who use compactness methods in L∞ and L1 for scalar conservation laws, [4] uses L2 compactness
methods, in the context of hyperbolic systems. Using the Banach-Alaoglu theorem, [4] proves the weak convergence of nonlinear
finite volume schemes for a general L2 initial data provided the mesh sequence satisfies a smoothness property.

The mesh smoothness assumption in [4] is required to prove the strong convergence of a sequence of discrete test functions gradi-
ents as the mesh is refined (lemma 4 in [4]). We propose a new approach, based on the Riesz-Fréchet-Kolmogorov compactness
theorem to prove the strong convergence of discrete gradient and therefore extend the result of [4] to general meshes.
Our new convergence result for L2 initial data on general meshes is therefore based on two compactness theorem : Banach-
Alaoglu theorem for the weak convergence of finite volume approximations, and Riesz-Fréchet-Kolmogorov theorem for the
strong convergence of discrete test functions gradients. We believe this appoach can find applications in the finite volume ap-
proximation of elliptic equations with a two point flux scheme.
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