Multilayer-HySEA

References

 

[1]

L. Bonaventura, E. D. Fernández-Nieto, J. Garres-Díaz, and G. Narbona-Reina. Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization. Journal of Computational Physics, 364:209–234, 2018.

[2]

M. Castro and E. Fernández-Nieto. A class of computationally fast first order finite volume solvers: PVM methods. SIAM Journal on Scientific Computing, 34(4):A2173–A2196, 2012.

[3]

V. Casulli. A semi–implicit finite difference method for non–hydrostatic free surface flows. Numerical Methods in Fluids, 30(4):425–440, 1999.

[4]

A. Chorin. Numerical solution of the navier-stokes equations. Mathematics of Computation, 22(104):745–762, 1968.

[5]

C. Escalante, E. Fernández–Nieto, T. Morales, and M. Castro. An efficient two–layer non–hydrostatic approach for dispersive water waves. Journal of Scientific Computing, 2018.

[6]

C. Escalante, E. D. Fernández-Nieto, T. M. de Luna, and M. J. Castro. An efficient two-layer non-hydrostatic approach for dispersive water waves. Journal of Scientific Computing, 79(1):273–320, 2018.

[7]

C. Escalante, E. Fernández-Nieto, J. Garres-Díaz, and A. Mangeney. Multilayer shallow model for dry granular flows with a weakly non-hydrostatic pressure. Journal of Scientific Computing, 96(88), 2023.

[8]

C. Escalante, E. Fernández-Nieto, J. Garres-Díaz, Y. Penel, and T. Morales de Luna. Non-hydrostatic layer-averaged approximation of Euler system with enhanced dispersion properties. Computational & Applied Mathematics, 42(177), 2023.

[9]

C. Escalante, T. Morales, and M. Castro. Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Applied Mathematics and Computation, 338:631–659, 2018.

[10]

E. D. Fernández-Nieto, M. Parisot, Y. Penel, and J. Sainte-Marie. A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. EN. Communications in Mathematical Sciences, 16(5):1169–1202, 2018.

[11]

J. T. Kirby, S. T. Grilli, J. Horrillo, P. L.-F. Liu, D. Nicolsky, S. Abadie, B. Ataie-Ashtiani, M. J. Castro, L. Clous, C. Escalante, et al. Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling, 170:101943, 2022.

[12]

G. Ma, F. Shi, and J. Kirby. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44:22–35, 2012.

[13]

J. Macías, C. Escalante, and M. Castro. Multilayer-HySEA model validation for landslide generated tsunamis. Part I Rigid slides. Nat. Hazards Earth Syst. Sci. Discuss., 2021.

[14]

J. Macías, C. Escalante, and M. Castro. Multilayer-hysea model validation for landslide-generated tsunamis – part 2: granular slides. Natural Hazards and Earth System Sciences, 21(2):791–805, 2021.

[15]

M. Ricchiuto and A. G. Filippini. Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries. Journal of Computational Physics, 271:306–341, 2014.

[16]

V. Roeber, K. F. Cheung, and M. H. Kobayashi. Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57(4):407–423, 2010.

[17]

A. Scala, S. Lorito, C. Escalante Sánchez, F. Romano, G. Festa, A. Abbate, H. B. Bayraktar, M. J. Castro, J. Macías, and J. M. Gonzalez-Vida. Assessing the optimal tsunami inundation modeling strategy for large earthquakes in subduction zones. Journal of Geophysical Research: Oceans, 129(9):e2024JC020941, 2024. e2024JC020941 2024JC020941.