Tsunami-HySEA

References

HySEA References

  1. Castro, M.J., Ferreiro, A., García, J.A., González, J.M., Macías, J., Parés, C. and Vázquez, M.E. (2005). On the numerical treatment of wet/dry fronts in shallow flows: Applications to one-layer and two-layer systems. Math. Comp. Model. 42 (3–4): 419–439.
  2. Castro, M.J., González, J.M. and Parés, C. (2006). Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Mod. Meth. App. Sci. 16(6):897–931.
  3. Castro, M.J., Chacón, T., Fernández‑Nieto, E.D., González‑Vida, J.M. and Parés, C. (2008). Well‑balanced finite volume schemes for 2D non‑homogeneous hyperbolic systems. Applications to the dam break of Aznalcóllar. Comp. Meth. Appl. Mech. Eng. 197(45):3932–3950.
  4. Castro, M.J., Fernández‑Nieto, E.D., Ferreiro, A.M., García‑Rodríguez, J.A. and Parés, C. (2009). High‑order extensions of Roe schemes for two‑dimensional non‑conservative hyperbolic systems. J. Sci. Comput. 39(1):67–114.
  5. Castro, M.J., Ortega, S., Asunción, M., Mantas, J.M. and Gallardo, J.M. (2011). GPU computing for shallow water flow simulation based on finite volume schemes. Comptes Rendus Mécanique 339:165–184.
  6. Castro, M.J., de la Asunción, M., Macías, J., Parés, C., Fernández‑Nieto, E.D., González‑Vida, J.M. and Morales, T. (2012). IFCP Riemann solver: Application to tsunami modelling using GPUs. In E. Vázquez, A. Hidalgo, P. García y L. Cea (eds.), CRC Press, Chapter 5: 237–244.
  7. Castro, M.J. and Fernández‑Nieto, E.D. (2012). A class of computationally fast first‑order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34:A2173–2196.
  8. Castro, M.J., González‑Vida, J.M., Macías, J., de la Asunción, M., Molinari, I., Melini, D., Romano, F., Tonini, R., Lorito, S. and Piatanesi, A. (2014). HySEA‑tsunami model: A GPU implementation for the Italian TEWS. In Perspectives of GPU Computing in Physics and Astrophysics. Roma (Italia), 15–17 septiembre 2014.
  9. Castro, M.J., González‑Vida, J.M. and Macías, J. (2014). Numerical schemes for SW equations aimed for tsunami simulations in the perspective of TEWS. Poster en TsuMaMoS 2014. Abril 2014, Málaga, España.
  10. de la Asunción, M., Mantas, J.M. and Castro, M.J. (2011). Simulation of one‑layer shallow water systems on multicore and CUDA architectures. J. Supercomput. 58:206–214.
  11. de la Asunción, M., Castro, M.J., Fernández‑Nieto, E.D., Mantas, J.M., Ortega, S. and González‑Vida, J.M. (2013). Efficient GPU implementation of a two‑waves TVD‑WAF method for the two‑dimensional one‑layer shallow water system on structured meshes. Computers & Fluids 80:441–452.
  12. Escalante, C., Morales de Luna, T. and Castro, M.J. (2018). Non‑hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Applied Mathematics and Computation 338:631–659. https://doi.org/10.1016/j.amc.2018.06.035
  13. Fernández, E.D., Bouchut, F., Bresh, D., Castro, M.J. and Mangeney, A. (2008). A new Savage‑Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys. 227:7720–7754.
  14. Gallardo, J.M., Parés, C. and Castro, M.J. (2007). On a well‑balanced high‑order finite volume scheme for shallow water equations with topography and dry areas. J. Comp. Phys. 227:574–601.
  15. Gallardo, J.M., Ortega, S., de la Asunción, M. and Mantas, J.M. (2011). Two‑dimensional compact third‑order polynomial reconstructions: solving non‑conservative hyperbolic systems using GPUs. J. Sci. Comput. 48:141–163.
  16. González‑Vida, J.M., de la Asunción, M., Castro, M.J., Macías, J., Ortega, S., Sánchez‑Linares, C., Arcas, D. and Titov, V. (2013). HySEA‑Landslide GPU‑based model: Validation to the 1958 Lituya Bay mega‑tsunami. International Tsunami Symposium (ITS2013), Göcek (Turquía), 25–28 septiembre 2013.
  17. González‑Vida, J.M., Macías, J., Ortega, S. and Castro, M.J. (2016). Modelling propagation and inundation of the March 2011 Tohoku tsunami with the tsunami‑HySEA model. In progress.
  18. Macías, J., Castro, M.J., González‑Vida, J.M., Ortega, S. and de la Asunción, M. (2013). HySEA tsunami GPU‑based model: Application to FTRT simulations. International Tsunami Symposium (ITS2013), Göcek (Turquía), 25–28 septiembre 2013.
  19. Macías, J., Castro, M.J., González‑Vida, J.M. and Ortega, S. (2013). Non‑linear shallow water models for coastal run‑up simulations. EGU 2013.
  20. Macías, J., Castro, M.J., González‑Vida, J.M., de la Asunción, M. and Ortega, S. (2014). HySEA: An operational GPU‑based model for tsunami early warning systems. EGU 2014.
  21. Macías, J. (2014). Tsunami Numerical Simulations: HySEA model. A GPU approach to tsunami modeling and case studies. Experts Meeting Workshop on Tsunami Modeling and Mitigation, Cartagena de Indias (Colombia), 1–3 diciembre 2014.
  22. Macías, J., Vázquez, J.T., Fernández‑Salas, L.M., González‑Vida, J.M., Bárcenas, P., Castro, M.J., Díaz‑del‑Río, V. and Alonso, B. (2015). The Al‑Boraní submarine landslide and associated tsunami: a modelling approach. Marine Geology 361:79–95. doi:10.1016/j.margeo.2014.12.006
  23. Macías, J., Castro, M.J., Ortega, S., Escalante, C. and González‑Vida, J.M. (2016). NTHMP Benchmarking of Tsunami‑HySEA model for propagation and inundation. The 2011 NTHMP Model Benchmarking Workshop. doi:10.13140/RG.2.2.35077.76001
  24. Macías, J., Mercado, A., González‑Vida, J.M., Ortega, S. and Castro, M.J. (2016). Comparison and numerical performance of tsunami‑HySEA and MOST models for LANTEX 2013 scenario: Impact assessment on Puerto Rico coasts. Pure and Applied Geophysics 173(12):3973–3997. doi:10.1007/s00024-016-1387-8
  25. Macías, J., Castro, M.J., Ortega, S., Escalante, C. and González‑Vida, J.M. (2016). Tsunami currents benchmarking results for tsunami‑HySEA. In NTHMP report for the MMS Benchmarking Workshop: Tsunami Currents. doi:10.13140/RG.2.2.22999.47527
  26. Millán, A. (2014). Estudio y validación de un modelo de volúmenes finitos TVD‑WAF 2D de aguas someras para la simulación de tsunamis. Universidad de Málaga. 101 pp.

Other References

  1. Bristeau, M.O., Mangeney, A., Sainte‑Marie, J. and Seguin, N. (2015). An energy‑consistent depth‑averaged Euler system: derivation and properties. Discrete and Continuous Dynamical Systems, Series B 20(4):961–988.
  2. Fritz, H.M., Hager, W.H. and Minor, H.-E. (2001). Lituya Bay case: rockslide impact and wave run‑up. Science of Tsunami Hazards 19(1):3–22.
  3. Gottlieb, S. and Shu, C.W. (1998). Total variation diminishing Runge–Kutta schemes. Math. Comp. 67:73–85.
  4. Heller, V. and Hager, W.H. (2011). Wave types of landslide‑generated impulse waves. Ocean Engineering 38(4):630–640.
  5. Kato, H. and Tsuji, Y. (1994). Estimation of fault parameters of the 1993 Hokkaido‑Nansei‑Oki earthquake and tsunami characteristics. Bull. Earthquake Res. Inst., University of Tokyo 69:39–66.
  6. Liu, P.L.-F., Yeh, H. and Synolakis, C.E. (2008). Advanced numerical models for simulating tsunami waves and run‑up. In Advances in Coastal and Ocean Engineering, Vol. 10. World Scientific, pp. 223–230.
  7. Marquina, A. (1994). Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15:892–915.
  8. NTHMP (National Tsunami Hazard Mitigation Program) (2012). Proceedings and results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP (NOAA Special Report). 436 pp.
  9. NTHMP (National Tsunami Hazard Mitigation Program) (2016). Report on the 2015 NTHMP Current Modeling Workshop. Portland, Oregon. 200 pp.
  10. Parés, C. (2006). Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1):300–321.
  11. Roeber, V., Cheung, K.F. and Kobayashi, M.H. (2010). Shock‑capturing Boussinesq‑type model for nearshore wave processes. Coastal Engineering 57:407–423.
  12. Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoğlu, U. and González, F.I. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics 165(11–12):2197–2228.
  13. Takahashi, T. (1996). Benchmark Problem 4: the 1993 Okushiri tsunami—data, conditions and phenomena. In H. Yeh, P. Liu and C. Synolakis (eds.), Long Wave Runup Models. World Scientific, pp. 384–403.
  14. van Leer, B. (1979). Towards the ultimate conservative difference scheme, V: a second‑order sequel to Godunov’s method. Computing Physics 32:101–136.
  15. Yamazaki, Y., Kowalik, Z. and Cheung, K.F. (2009). Depth‑integrated, non‑hydrostatic model for wave breaking and run‑up. Int. J. Numer. Meth. Fluids 61(5):473–497.
  16. Yeh, H., Liu, P. and Synolakis, C.E. (1996). Benchmark Problem 4: the 1993 Okushiri data, conditions and phenomena. World Scientific Publishing Co. Pte. Ltd.